
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Specifying and Detecting Temporal Patterns with Shape
Expressions

Dejan Ničković · Xin Qin · Thomas Ferrère · Cristinel Mateis ·
Jyotirmoy Deshmukh

Received: date / Accepted: date

Abstract Modern Cyber-physical systems (CPS) and

the Internet-of-Things (IoT) are data factories gener-

ating, measuring and recording huge amounts of time

series. The useful information in time series is usually

present in the form of sequential patterns. We propose

shape expressions as a declarative language for speci-

fication and extraction of rich temporal patterns from

possibly noisy data. Shape expressions are regular ex-

pressions with arbitrary (linear, exponential, sinusoidal,

etc.) shapes with parameters as atomic predicates and

additional constraints on these parameters. We asso-

ciate to shape expressions novel noisy semantics that

combines regular expression matching semantics with

statistical regression. We study essential properties of

the language and propose an efficient heuristic for ap-

proximate matching of shape expressions. We demon-
strate the applicability of this technique on two case

studies from the health and the avionics domains.

Keywords Statistical regression · Pattern matching ·
Regular expressions · Runtime monitoring

D. Ničković
AIT Austrian Institute of Technology

X. Qin
University of Southern California

T. Ferrère
Imagination Technologies, UK

C. Mateis
AIT Austrian Institute of Technology

J. Deshmukh
University of Southern California

1 Introduction

Cyber-physical systems (CPS) and Internet-of-Things

(IoT) applications are becoming increasingly present

in our everyday life. Industry 4.0 with its smart facto-

ries and digital twins, smart buildings that adapt heat-

ing control to the user’s habit, intelligent transporta-

tion systems that optimize traffic based on the continu-

ous monitoring of the road conditions, wearable health

monitoring devices, and medical devices that fine-tune

a given therapy depending on sensing a patient’s health

are few examples of modern CPS and IoT. These sys-

tems typically adopt data-driven decision-making based

on measuring the dynamic behavior of the environment

and the analysis of its properties. This data-driven ap-

proach to control is enabled by low-cost sensors, pow-

erful edge devices and cloud facilities. Therefore, CPS

and IoT are becoming veritable data factories that gen-

erate, measure and record time series. Processing these

huge amounts of data efficiently to extract useful in-

formation is an extremely challenging task. It is often

the case that only specific segments of the time series

contain interesting and relevant patterns. For instance,

an electricity provider may be interested in observing

spikes or oscillations in the voltage signals. A medi-

cal device manufacturer may want to detect anomalous

cardiac behavior. A wearable device maker would like

to associate specific patterns in the measurements from

accelerometer and gyroscope sensors to a concrete user

activity, such as running or walking.

Such patterns can be often characterized with geo-

metric shapes observed in the time-series data; e.g., a

spike can be specified as an “upward triangle”, i.e. a se-

quence of two contiguous line segments with slopes that

have opposite signs. There are also instances where the

time-series data is multi-dimensional (say (x(t), y(t))),

2 Dejan Ničković et al.

and the user may be interested in knowing if a “pulse”

shape in x(t) is followed by an “exponential decay”

shape in y(t).

We propose shape expressions, a novel declarative

language for specifying sophisticated temporal patterns

over (possibly multi-dimensional) time series. In essence,

a shape expression is a regular expression where atomic

predicates are arbitrary shapes with parameters (slope,

offset, frequency, etc.), and with additional parameter

constraints. We associate to shape expressions a noisy

language that allows observed data to approximately

match the expression. The noisy expression semantics

combines classical regular expression semantics with

statistical regression, which is used to match atomic

shapes and infer parameter valuations that minimize

the noise between the ideal shape and the observation.

We allow either using mean squared error (MSE) or

the coefficient of determination (CoD), statistical mea-

sures of how close the observed data are to the fitted re-

gression (atomic) shape, as our noise metric. We define

shape automata as an executable formalism for match-

ing shape expressions and propose a heuristic for query-

ing time series with shape expressions efficiently. We

apply this algorithm to two case studies from different

CPS and IoT domains to demonstrate its applicability.

This paper extends our previous work on shape ex-

pressions [20] in two directions:

– We provide the detailed proofs of all the theorems

that are stated in the manuscript, and

– We extend one of the two case studies with a spec-

ification that involves concatenation of two differ-

ent signals and its associated experimental results

demonstrating the applicability of our approach in

a multi-dimensional setting.

Illustrating Example

We use the example depicted in Figure 1 to illustrate

the concepts presented in this paper. This figure shows

a raw noisy signal that contains two pulses. The two

pulses differ both in duration, depth and offset, but

have the same qualitative shape that characterizes them

as pulses. Figure 2 shows a specification of an ideal

pulse. We characterize a pulse as a sequence of 5 seg-

ments: (1) constant segment at some b; (2) linearly

decreasing segment with slope a2 < 0; (3) constant

segment at some b3; (4) linearly increasing segment

with slope a4 > 0; and (5) constant segment at b. We

observe that the above specification uses parametric

shapes, where the parameters are possibly constrained

(e.g. a2 < 0) or shared between shapes (e.g. b), and

describes a perfect shape without accounting for noise.

Fig. 1: Two pulse shapes.

b

t2 t3 t4 t5 t6t1

b2

b3

Fig. 2: Idealized Pulse shape

Related Work

Regular expressions and temporal logics are the most

common general purpose specification languages for ex-

pressing temporal patterns in the formal methods com-

munity. However, specifying temporal patterns in data

is a problem that has been pervasively studied. For in-

stance, specification and recognition of a pulse in pulse-

based communications is an IEEE standard [1] in its

own right. Extracting unspecified motifs in time series

has been studied in data-mining [22], and feature ex-

traction using patterns has been studied in machine

learning [21,12]. More recently, time series shapelets

were introduced in [30] as a data mining primitive. A

shapelet is a time series segment representing a cer-
tain shape identified from data. Our work is partially

motivated by the concept of shapelets. In contrast to

shapelets that are extracted from unlabelled data, shape

expressions provide a more supervised feature extrac-

tion mechanism, in which domain-specific knowledge is

used to express shapes of interest.

In the context of CPS, timed regular expressions

(TRE) [7,6], quantitative regular expressions (QRE) [3,

2,4,19], Signal Temporal Logic (STL) [18] and various

stream languages [10,11,17,15,16] have been used as

popular formalisms for specifying properties of CPS

behaviors. QREs are a powerful formalism that com-

bines quantitative computations over data with regu-

lar expression-based matching. An offline algorithm for

matching TREs was proposed in [24,23]. This thread of

work was extended to online pattern matching in [25].

Automata-based matching for TREs has been devel-

oped in [26–28]. In contrast to our approach, pattern

matching with QREs and TREs is sensitive to noise

in data. The problem of uncertainty has been stud-

Specifying and Detecting Temporal Patterns with Shape Expressions 3

ied through parameterized TRE specifications, either

by having parameters in time bounds [5] or in spatial

atomic predicates [8]. These approaches are orthogo-

nal to ours – instead of having parameters on standard

TRE operators, we focus on a rich class of parameter-

ized atomic shapes. Finally, a sophisticated algorithm

to incrementally detect exponential decay patterns in

CO2 measurements was proposed in [29] in the context

of smart building applications. We adapt and extend

this basic idea to a general purpose specification lan-

guage that allows combining such atomic shapes with

regular operators.

2 Shape Expressions and Automata

In this section, we define shape expressions as our pat-

tern specification language. In essence, they are regular

expressions over parametrized signal shapes, such as lin-

ear, exponential or sine segments, and with additional

parameter constraints. We then define shape automata,

which provide an executable foramlizm for represent-

ing shape expressions and recognizing composite signals

made of several types of segments. This executable for-

malism captures exactly the notion of shape expression,

and will allow us to define a family of pattern matching

algorithms as we will see in Section 3. We first give a

few basic definitions necessary to our framework, such

as notions of signals, parameters, and shapes.

2.1 Definitions

Let P = {p1, . . . , pn} be a set of parameter symbols. A

parameter valuation v maps parameters p ∈ P to values

v(p) ∈ R∪{⊥}, where ⊥ represents the undefined value.

We use the shortcut v(P) to denote {v(p1), . . . , v(pn)}.
A constraint γ over P is a Boolean combination of in-

equalities over P . We write v |= γ when the constraint

γ is satisfied by the valuation v. Given p ∈ P and p ∼ k
for ∼∈ {<,≤, >,≥} and some k ∈ R, we have that

v(p) = ⊥ implies that v 6|= p ∼ k. We denote by Γ (P)

the set of all constraints over P .

Let X be a set of signal variables. A signal w over

X is a function w : X × [0, d) → R, where [0, d) is

the time domain of w, which we assume to be discrete,

hence a subset of Z. We denote by |w| = d the length

of w.

Given two signals w1 : X × [0, d1) → R and

w2 : X × [0, d2) → R, we denote by w ≡ w1 · w2

their concatenation w : X × [0, d1 + d2) → R, where

for all x ∈ X, w(x, t) = w1(x, t) if t ∈ [0, d1) and

w(x, t) = w2(x, t− d1) if t ∈ [d1, d1 + d2). Let w : X ×

[0, d) → R be a signal, and d1 and d2 be two con-

stants such that 0 ≤ d1 < d2 ≤ d. We denote by

w[d1,d2) : X × [0, d2 − d1) → R the restriction of w

to the time domain [d1, d2), such that for all x ∈ X

and t ∈ [0, d2 − d1), w[d1,d2)(x, t) = w(x, t + d1). We

allow signals of null duration d = 0, which results in

the unique signal with the empty time domain.1

Consider two sequences y = y1, . . . , yn and f =

f1, . . . , fn of values, where y represents a sequence of

observations and f the corresponding sequence of pre-

dictions given by a model which approximates the dis-

tribution of y. The mean squared error MSE(y, f) of f

relative to y is a statistical measure of how well the

predictions of a (regression) model approximates the

observations, and is defined as follows.

MSE(y, f) =
1

n
Σn
i=1(yi − fi)2

Another statistical measure in a regression analy-

sis of how well the predictions of a (regression) model

approximates the observations is the coefficient of de-

termination R2, defined in terms of the mean ȳ of the

sequence y, its total sum of squares SStot and the resid-

ual sum of squares SSres as follows:

R2(y, f) = 1− SSres(y,f)
SStot(y)

ȳ = 1
nΣ

n
i=1yi

SStot(y) = Σn
i=1(yi − ȳ)2 SSres(y, f) = Σn

i=1(yi − fi)2

The coefficient of determination R2 typically ranges

from 0 to 1. AnR2 of 1 indicates that the predictions are
a perfect match of the observations. On the contrary,

an R2 of 0 indicates that the model explains none of

the variability of the response data around its mean.

Negative values of R2 can occur if the predictions fit

the observations worse than a horizontal hyperplane.

2.2 Shape Expressions

We now define the syntax and semantics of shape ex-

pressions defined over the set X of signals and the set

P of parameter variables. A shape σx(P ′) is an expres-

sion that maps parameter variables P ′ ⊆ P and the

signal variable x ∈ X to a parameterized family of ide-

alized signals. To every shape σx, we associate a special

duration variable lσ,x that is included in the set P of

1 The signal with the empty time domain is equivalent to
the empty word in the classical language theory

4 Dejan Ničković et al.

parameter variables.2 Consider the basic shapes below.

linx(a, b, l) ≡ {w | ∃v.|w| = v(l) ∧
w(x, t) = t · v(a) + v(b)} (1)

expx(a, b, c, l) ≡ {w | ∃v.|w| = v(l) ∧
w(x, t) = v(a) + v(b)et·v(c)} (2)

sinx(a, b, c, d, l) ≡ {w | ∃v.|w| = v(l) ∧ w(x, t) =

v(a) + v(b) sin(v(c)t+ v(d))} (3)

In (1), we describe a line segment parameterized

by its slope a, and intercept b. In (2), we describe an

exponential shape with parameters a, b, c, and l, while

(3) describes a parametrized family of sinusoidal shapes

with the specified parameters.3 Given a valuation v and

a shape σx(P ′), we denote by w(x) = σx(v(P ′)) the

signal w that instantiates the shape σx to concrete pa-

rameter values defined by v. We assume a finite set Σ

of shapes, without imposing further restrictions. Shape

expressions (SE) are regular expressions, where shapes

with unknown parameters play the role of atomic primi-

tives, and which have an additional restriction operator

for enforcing parameter constraints.

Definition 1 (SE syntax) The shape expressions are

given by the grammar

ϕ ::= ε | σx(P ′) | ϕ1 ∪ ϕ2 | ϕ1 · ϕ2 | ϕ∗ | ϕ : γ

where σ ∈ Σ, x ∈ X, P ′ ⊆ P , and γ ∈ Γ (P).

The symbol ε denotes the empty word, the operators

ϕ1 ∪ ϕ2, ϕ1 · ϕ2 and ϕ∗ denote the classical regular ex-

pression union, concatenation and Kleene star respec-

tively, while ϕ : γ says that ϕ is constrained by γ. We

write ϕi as an abbreviation of ϕ · · ·ϕ (i times). We de-

note by ΣX(P) the set of expressions of the form σx(P ′)

for σ ∈ Σ, x ∈ X and P ′ ⊆ P . The set of shape expres-

sions over P and X is denoted Φ(P,X).

Example 1 Consider the visual pulse specification from

Figure 2. We describe an ideal pulse as a shape expres-

sion ϕpulse as follows:4

ϕ ≡ linx(0, b) · linx(a2, b2) : a2 < 0·
linx(0, b3) · linx(a4, b4) : a4 > 0 · linx(0, b)

2 We use l instead of lσ,x whenever its association to σx
is clear from the context, and omit lσ,x altogether when not
interested in the duration of the shape.
3 We omit the duration variable l whenever we are not in-

terested in the duration of a shape – for instance we then use
the notation sin(a, b, c, d).
4 We abuse the notation and replace a parameter vari-

able by a constant, for instance linx(0, b), as a shortcut for
linx(a1, b) : a1 = 0.

The semantics of shape expressions is given as a re-

lation between signals and parameter valuations, which

we call a language. We associate with every shape ex-

pression a noisy language Lν for some noise tolerance

threshold ν ≥ 0, capturing the ν-approximate meaning

of the expression. The exact language L capturing the

precise meaning of the expression is obtained by setting

ν to zero.

To define the noisy language of an expression, we as-

sociate a goodness-of-fit measure of a signal to an ideal

shape, describing how far is the observed signal from

the ideal shape. We derive this measure by combining

mean squared error (MSE) computed on atomic shapes.

The overall measure gives the quality of a match to a

shape expression. We formally define the noisy language

as follows.

Definition 2 (SE noisy language) Let ν ∈ R≥0 be

a noise tolerance threshold. The noisy language Lν of

a shape expression is defined as follows:

Lν(ε) = {(w, v) | |w| = 0}
Lν(σx(P ′)) = {(w, v) | |w| = v(l) and

µ(w(x), σx(v(P ′))) ≤ ν}
Lν(ϕ1 · ϕ2) = {(w1 · w2, v) | (w1, v) ∈ Lν(ϕ1) and

(w2, v) ∈ Lν(ϕ2)}
Lν(ϕ1 ∪ ϕ2) = Lν(ϕ1) ∪ Lν(ϕ2)

Lν(ϕ∗) =
⋃∞
i=0 Lν(ϕi)

Lν(ϕ : γ) = {(w, v) | (w, v) ∈ Lν(ϕ) and v |= γ}

where µ(y, f) is substituted by either MSE(y, f) or 1−
CoD(y, f).

The noisy SE language is defined as the set of all sig-

nal/parameter valuation pairs, such that the distance

of the signal from the ideal shape signal defined by the

shape expression and instantiated by the parameter val-

uation is smaller than or equal to the noise threshold.

Example 2 Consider the shape expression ϕpulse spec-

ifying a pulse, the signal w depicted in Figure 1, and

the signal w′ = wI the restriction of w to the interval

I = [7, 26). Let us consider the valuation of paramter

variables v = (v(a2), v(a4), v(b), v(b2), v(b3), v(b4)) =

(−0.67, 0.67, 9, 17, 7,−5) in ϕpulse that instantiates the

ideal shape (red line) of the first pulse depicted in Fig-

ure 1. Let w1 = w[7,12), w2 = w[12,15), w3 = w[15,18),

w4 = w[18,21) and w5 = w[21,26), with:

MSE(w1(x), linx(0, v(b))) = 0.04

MSE(w2(x), linx(v(a2), v(b2))) = 0.49

MSE(w3(x), linx(0, v(b3))) = 0.13

MSE(w4(x), linx(v(a4), v(b4))) = 0.35

MSE(w5(x), linx(0, v(b))) = 0.10

Hence (w′, v) ∈ L0.5(ϕpulse) but (w′, v) 6∈ L0.1(ϕpulse).

Specifying and Detecting Temporal Patterns with Shape Expressions 5

any

q0 q2

q3

q1

q4q5

linx(0, b) linx(a2, b2)

linx(a4, b4)linx(0, b)

a2 < 0

a4 > 0

linx(0, b3)

ŝ

f̂

any

Fig. 3: Shape automaton Apulse

2.3 Shape Automata

We now define shape automata, which will act as rec-

ognizers for shape expressions. They are akin to finite

state automata in which edges are labeled by shape

expressions with unknown parameters, and parameter

constraints. We then show that shape expressions and

shape automata are inter-translatable.

Definition 3 (Shape automata) A shape automa-

ton is a tuple 〈P,X,Q,∆, S, F 〉, where (1) P is the

set of parameters, (2) X is the set of real-valued sig-

nal variables, (3) Q is the set of control locations, (4)

∆ ⊆ Q × ΣX(P) × Γ (P) × Q is the set of edges, (5)

S ⊆ Q is the set of starting locations, and (6) F ⊆ Q

is the set of final locations.

Example 3 The shape automaton Apulse, shown in Fig-

ure 3 recognizes pulse shapes specified by the shape

expression ϕpulse.

A state in a shape automaton is a pair (q, v) where

q is a location and v is a parameter valuation. The runs

of shape automata are akin to those in weighted au-

tomata and defined as follows. For a signal w we define

transitions
w−→
c

between two states as follows. We have

(q, v)
w−→
c

(q′, v′) if there exists (q, σx(P ′), γ, q′) ∈ ∆

such that P ′ ⊆ P , c = µ(w(x), σx(v′(P ′))), v′ |= γ,

v′(p) = v(p) for all p ∈ P\P ′ and v′(p) = v(p) also for

all p ∈ P ∩ P ′ such that v(p) 6= ⊥. The semantics of a

shape automaton are given as follows.

Definition 4 (Shape automaton run) A run of a

shape automaton over some signal w is a sequence of

transitions

(q0, v0)
w1−−→
c1

(q1, v1)
w2−−→
c2

. . .
wn−−→
cn

(qn, vn)

such that q0 ∈ S, v0 = (⊥, . . . ,⊥) and qn ∈ F , where

w1 ·w2 · · ·wn is a decomposition of w. Such a run ρ in-

duces cost(ρ) = maxni=1 ci and the parameter valuation

val(ρ) = vn.

The set of runs of a shape automatonA over some signal

w is denoted R(A, w). A shape automaton A associates

any given signal w to a similarity measure that is the

minimum among the similarity measures of all runs.

Definition 5 (SA language and noisy language)

The noisy language of a shape automaton for a given

noise tolerance threshold ν ∈ R+ is Lν(A) = {(w, v) |
∃ρ ∈ R(A, w) s.t. val(ρ) = v and cost(ρ) ≤ ν}. The

exact language of a shape automaton is L(A) = L0(A).

Example 4 Consider the signal w′ = w1w2w3w4w5 from

Example 2 and let:

v1 = (⊥,⊥, 9,⊥,⊥,⊥) c1 = 0.04

v2 = (−0.67,⊥, 9, 17,⊥,⊥) c2 = 0.49

v3 = (−0.67,⊥, 9,⊥, 7,⊥) c3 = 0.13

v4 = (−0.67, 0.67, 9, 17, 7,−5) c4 = 0.35

v5 = (−0.67, 0.67, 9, 17, 7,−5) c5 = 0.10

We then have, assuming v0 = (⊥,⊥,⊥,⊥,⊥,⊥), that

ρ = (q0, v0)
w1−−→
c1

(q1, v1)
w2−−→
c2

. . .
w5−−→
c5

(q5, v5)

is a run of Apulse over w′ with cost(ρ) = 0.49 and w′ ∈
L0.5(Apulse).

We now give a formal equivalence between shape

expressions and shape automata. The first direction of

the theorem allows to construct automata recognizers

for arbitrary expressions. The second direction of the

theorem shows that shape expressions are expressively

complete relative to the class of automata under con-

sideration.

Theorem 1 (SE ⇔ SA) For any shape expression ϕ

there exists a shape automaton Aϕ such that Lν(Aϕ) =

Lν(ϕ) for all ν ≥ 0. For any shape automaton A there

exists a shape expression ϕA such that Lν(ϕA) = Lν(A)

for all ν ≥ 0.

Proof We show the two directions in turn.

(⇒) Automaton Aϕ = (P,X,Qϕ, ∆ϕ, Sϕ, Fϕ) equiv-

alent to the expression ϕ is defined inductively as

follows, assuming disjoint sets of locations.

– Empty word: Aε consists of Qε = Sε = Fε = {q}
and ∆ε = ∅.

– Basic shapes: For β = σx(P ′), Aβ consists of

Qβ = {q, q′}, Sβ = {q}, Fβ = {q′}, and ∆β =

{(q, β, true, q′)}.
– Union: Aϕ∪ψ is the component-wise union of Aϕ

and Aψ.

– Concatenation: Aϕ·ψ consists of Qϕ·ψ = Qϕ ∪
Qψ, Sϕ·ψ = Sϕ if Sϕ∩Fϕ = ∅, Sϕ∪Sψ otherwise,

Fϕ·ψ = Fψ, and ∆ϕ·ψ = ∆ϕ∪∆ψ ∪{(q, σ, γ, q′) |
∃q′′ ∈ Fϕ, (q, σ, γ, q′′) ∈ ∆ϕ, q

′ ∈ Sψ}.
– Kleene star: similar to concatenation.

6 Dejan Ničković et al.

– Constraints: Aϕ:γ consists of Qϕ:γ = Qϕ ∪ {qγ},
Sϕ:γ = Sϕ, Fϕ:γ = {qγ}, and ∆ϕ:γ = ∆ϕ ∪
{(q, σ, γ ∧ γ′, qγ) | ∃q′ ∈ Fϕ, (q, σ, γ′, q′) ∈ ∆ϕ}.

One can prove by structural induction the desired

property of Aϕ.

(⇐) An expression equivalent to A can be obtained

by state elimination, as for classical regular expres-

sions. For this, one defines extended shape automata,

whose edges are labeled by possibly complex shape

expressions. The only form not present in classical

construction is the constraint ϕ : γ. For this, we sim-

ply apply all constraints to the atomic expressions

present on that edge as a preprocessing step. The

resulting extended shape automaton has the same

semantics as the original shape automaton. ut

3 Pattern Matching

In Section 2.3, we introduced shape automata to recog-

nize signals that are close to a specified shape. However,

a shape expression is not intended to represent a whole

signal, but only a segment thereof. In this section, we

extend shape automata to enable them identifying all

signal segments that match specific shapes. We first de-

fine the notion of noisy match sets.

Definition 6 (Noisy match set) For any signal w

defined over a time domain T = [0, d), shape expression

ϕ and noise tolerance threshold ν, we define the noisy

match set Mν(ϕ,w) as follows:

Mν(ϕ,w) = {(t, t′) ∈ T2 | t ≤ t′ and w[t,t′) ∈ Lν(ϕ)}

Given a shape automaton A, its associated shape

matching automaton Â is another shape automaton that

extends A with dedicated initial and final locations,

which allow Â to silently consume a prefix and a suffix

of a signal. The construction follows [9] and is given in

the definition below.

Definition 7 (Shape matching automaton) We de-

rive from every shape automatonA = 〈P,X,Q,∆, S, F 〉
a shape matching automaton Â = 〈P,X, Q̂, ∆̂, Ŝ, F̂ 〉,
such that

– Q̂ = Q ∪ {ŝ, f̂}
– Ŝ = {ŝ}
– F̂ = {f̂}
– ∆̂ = ∆ ∪ {(ŝ, any, true, q) | q ∈ S} ∪ {(q, any, true, f̂)

| q ∈ F}, where any is a special shape such that

µ(w, any) = 0 for all w.

Intuitively, given a signal w, a shape expression ϕ

and its associated shape matching automaton Âϕ, an

accepting run ρ over w decomposed into w0 ·w1 · · ·wn+1

in Âϕ

(ŝ, v0)
w0−−→
0

(q0, v0)
w1−−→
c1

. . .
wn−−→
cn

(qn, vn)
wn+1−−−→

0
(f̂ , vn)

represents one potential match (associated to the seg-

ment (t, t′) in w where t = |w0| and t′ = |w| − |wn+1|)
with one specific parameter instantiation (vn) and its

associated similarity measure cost(ρ) = maxni=1 ci. We

denote by λ(ρ) = (t, t′) the label of run ρ over w in Â.

We first note that there is an infinite number of runs

over w in Âϕ that follow a given decomposition of w,

simply due to the parameters being valued as real num-

bers. We also note that for a given signal w, there is a

finite (but large) number of its decompositions.

Example 5 Figure 4 shows three runs ρ1, ρ2 and ρ3 over

w in Âpulse and the corresponding ideal shapes defined

by the valuations computed during the runs. We can see

that each run identifies one segment of w that could be

a potential match of the shape expression ϕpulse with

specific parameter values and cost. In particular, we

can observe that runs ρ1 and ρ2 decompose w in the

same manner but with different parameter valuations,

resulting in cost(ρ1) < cost(ρ2).

Fig. 4: Pulse train - three runs ρ1, ρ2 and ρ3 over w in

Âpulse.

From the above observations, we obtain that the la-

beling of the set of runs associated to a shape matching

automaton Â and a signal w gives us exactly the match

set of L(A) relative to w.

Theorem 2 (Computation) Let ϕ be a shape expres-

sion, Âϕ the corresponding shape matching automa-

ton, w a signal and ν a noise tolerance threshold. We

have that Mν(ϕ,w) = {(t, t′) | ∃ρ ∈ R(Âϕ, w) s.t.

λ(ρ) = (t, t′) and cost(ρ) ≤ ν}.

Proof In one direction, we have that if w ∈ L(Âϕ) then

there exists a prefix of w with duration t spent in the

Specifying and Detecting Temporal Patterns with Shape Expressions 7

initial state and a suffix of w in the final state of Âϕ, and

the resulting infix u of w with duration t′−t verifies u ∈
L(ϕ), by Theorem 1. Hence by definition of the match

set we have (t, t′) ∈ Mν(ϕ,w). In the other direction,

assume (t, t′) ∈Mν(ϕ,w). Then w[t,t′) ∈ Lν(ϕ) so that

by Theorem 1 there exists a run of Âϕ whose label is

(t, t′). ut

We observe that while this result in principle solves

the SE pattern-matching problem, the complexity in

terms of signal length is not practical. Let us define the

dot-depth of some expression ϕ the maximal number

of concatenation operators on any branch of its syntax

tree.

Theorem 3 (Complexity) The size of the set of runs

of a shape matching automaton Âϕ is Ω(nk+2), where

n is the size of the trace, and k is the dot-depth of ϕ.

Proof Let w be a signal of length n. Every split of w

into u·w1 · · ·wk+1 ·u′ induces k+2 splitting points. The

number of such splittings grows as fast as Ω(nk+2) with

the length n of w. An expression ϕ with dot-depth k

induces k+2 transitions in its shape matching automa-

ton: one between ŝ and q0, one between the last state

qn and f̂ , and one for very concatenation in the subex-

pression with maximal nesting of concatenations. These

transitions create k+ 2 splitting points of w. There are

at least as many runs in the set of runs of Âϕ over w

as the number of decompositions of w according to the

above. Hence the set of possible runs is Ω(nk+2). ut

The dot-depth of any expression is nonnegative, so

that this lower bound is at least quadratic in the length

of the signal. (A concatenation-free expression still has

a quadratic number of possible start/end points for

its potential matches.) This means that computing the

match set exhaustively through runs of a shape match-

ing automaton will not scale in practical applications

where typical signals are, for example, 106 samples long.

We propose two ways to handle complexity:

1. Bound the length of matches;

2. Develop heuristics to efficiently match shape expres-

sions.

Bounding the length of matches is reflected in the fol-

lowing definition.

Definition 8 (Bounded expression) A shape ex-

pression is said to be bounded (by k) when for all words

w we have that w ∈ L(ϕ) implies |w| ≤ k.

Over bounded expressions, the complexity of comput-

ing the match set through runs of a shape matching

automaton becomes linear in the length of the signal.

Theorem 4 (Complexity of bounded expression)

For an expression ϕ bounded by k the set of accepting

runs of the shape matching automaton can be repre-

sented by a dag of size O(nkm2), where n is the length

of the trace and m is the length of the expression.

Proof Let w be a signal of length n. For any position

0 ≤ i < n there are at most k positions j ≤ i for

which there exist signals u, u′, w′ such that w = u ·
w′ · u′, |u| < i ≤ |u| + |w′|, and w′ is a match of ϕ.

This is because w′ is at most of length k. Hence any

run of the shape matching automaton derived from ϕ

that features a sequence of states q0 · · · qk such that

q0, . . . , qk /∈ {ŝ, f̂}, where ŝ and f̂ are the initial and

final states, can be aborted. There are n positions in

the word w and in any position i the automaton can

be in one of m discrete states (followed by an arbitrary

cost) and 2 states ŝ, f̂ (followed by a zero cost). Since

these 2 states respectively share the same cost, prefixes

or suffixes of runs in the initial or final states can be

joined. Hence a dag representation of the run tree does

not exceed km + 2 states in width and n + 1 states in

length. Transitions from every state in the dag at any

position go out to at most one of m + 1 states in the

next position. ut

4 Policy Scheduler for Shape Matching

Automata

In this section, we propose a heuristic in the form of a

policy scheduler that efficiently approximates the com-

plete match set by computing a representative subset

of non-overlapping matches.

Let w be a signal defined over X and σx(P ′) a shape

with x ∈ X. We denote by reg the statistical regression

with constraints which returns the pair of the parameter

values v(P ′) which minimizes MSE under the constraint

γ and the associated µ(w, σx(v(P ′))), defined as follows:

reg(w, σx, γ) = (argminv{MSE(w, σx(v(P ′))) | v |= γ},
µ(w, σx(v(P ′))))

We now show that µ (either MSE or CoD) can be com-

puted in an online fashion. Given the two sequences

y = y1, . . . , yn and f = f1, . . . , fn of observations and

predictions, we define a recursive definition of MSE and

CoD as follows.

MSE(y, f, n+ 1) = n
n+1 MSE(y, f, n)+
1

n+1 (yn+1 − fn+1)2

ȳ(n+ 1) = n
n+1 ȳ(n) + 1

n+1yn+1

SStot(y, n+ 1) = SStot(y, n)+

(yn+1 − ȳ(n))(yn+1 − ȳ(n+ 1))

SSres(y, f, n+ 1) = SSres(y, f, n) + (yn+1 − fn+1)2

R2(y, f, n+ 1) = 1− SSres(y,f,n+1)
SStot(y,n+1)

8 Dejan Ničković et al.

Algorithm 1: Policy scheduler

policy scheduler

Output: Approximate match set M

1 t← 0; M ← ∅; S ← outq(Ŝ);

2 while t ≤ |w| do

3 t′ ← expression match(S, t);

4 if t′ > t then M ←M ∪ {(t, t′)};
t← t′ + 1 ;

5 else t← t+ 1 ;

6 return M

We require a minimum length λ > 1 for atomic

shape matches.5 We define two auxiliary methods outq
and out∆ as follows:

outq(S) = {q′ | ∃ (q, σx, γ, q
′) ∈ ∆ for some q ∈ S}

out∆(S) = {δ | ∃ δ = (q, σx, γ, q
′) ∈ ∆ for some q ∈ S}

The method policy scheduler (see Algorithm 1) searches

for matches in w that do not overlap, using the method

expression match. It reads the signal w from time 0, and

incrementally attempts to find non-overlapping shape

expression matches, stored in the set M (initialized to

an empty set, see line 1). The incremental matching is

done as long as the procedure does not reach the end

of the signal w (while loop, lines 2 − 5). In each loop

iteration, a new expression match is attempted, starting

at the current time t and from the set of initial locations

S (see line 1). The matching is done by the method

expression match (line 3), which returns the end time of

the match t′. If t′ is strictly greater than t, it means

that the shape expression is successfully matched by

the segment (t, t′) of w and this segment as added to M

(line 4). Since our heuristic does not allow overlapping

matches, the next match attempt is scheduled at t′+ 1.

If t′ is smaller than or equal to t, it means that the

shape expression could not be matched from time t.

The next matching attempt is scheduled at t + 1 (line

5).

The shape matching procedure expression match (see

Algorithm 2) attempts in a recursive fashion to reach a

final location from a set of locations S and time index

t. The procedure returns another time index t′, where

t′ ≥ t if a final location can be reached in t′ − t steps

from a location in S, or t′ = −∞ (the initial value of

t′, see line 1) otherwise. If one of the locations is a fi-

nal location, we have that t′ = t (line 2). If none of

the locations in S is final, and we have not yet reached

5 We also assume that the SMA Â, the signal w, the
noise tolerance threshold ν and the minimum match length
λ are given as global parameters to the main procedure
policy scheduler and are implicitly propagated to all the other
methods

Algorithm 2: Shape expression match

expression match

Input: Set of locations S, current end match

time t

Output: New end match time t′

1 t′ ← −∞ ;

2 if S ∩ F 6= ∅ then t′ ← t ;

3 else if t < |w| then

4 foreach δ = (q, σx, γ, q
′) ∈ out∆(S) do

5 τ ← atomic match(δ, t) ;

6 if τ > −∞ then

τ ′ ← expression match({q′}, τ);

t′ ← max{t′, τ ′} ;

7 return t′

the end of w (line 3), the procedure does the following.

For every transition with a source location in S, labeled

by σx and γ (line 4), atomic match computes the end

time τ of the longest match of σx that satisfies γ and

starts at t (line 5). If there is no such match, τ equals

to −∞, otherwise τ ≥ t + λ.6 For all the transitions

that result in a match ending at time τ , we recursively

call expression match with the target location q′ and

time τ as inputs, and τ ′ as output (line 6). The pro-

cedure keeps the longest from the successful expression

matches. This effectively allows the procedure to con-

currently follow multiple paths and select the one that

provides the longest match.

The atomic shape matching procedure atomic match,

shown in Algorithm 3, efficiently computes the longest

match of an atomic shape starting from a given time

index. It takes as inputs a transition δ = (q, σx, γ, q
′)

and the time index t, and returns the end time t′ of

the longest σx ν-noisy match [t, t′] that satisfies γ. The

algorithm starts by fitting the shape σx to the segment

w′ = w[t,t+τ) under the constraint γ, using the regres-

sion method reg, and thus estimating the parameters

v (lines 3). The procedure reg also returns the corre-

sponding µ-value c of the performed regression. If the

associated µ-value c is greater than the allowed noise

tolerance ν, the procedure returns t′ = −∞, meaning

that the segment is not a good candidate for matching

the shape. Otherwise, the algorithm iteratively extends

the size τ of the segment as long as the µ-value between

the extended prefix and σx(v(P ′)) instantiated with the

fixed parameter valuation v remains lower than or equal

to ν (lines 4− 10). We note that each extension of the

signal prefix updates µ but not the parameter valuation.

There are two possible reasons for µ becoming greater

6 Recall that we require atomic matches of minimum length
λ.

Specifying and Detecting Temporal Patterns with Shape Expressions 9

Algorithm 3: Atomic shape match

atomic match.
Input: Transition δ = (q, σx, γ, q

′), start match

time index t

Output: End match time t′

1 t′ ← −∞;

2 if t+ λ ≤ |w| then

3 τ ← λ; w′ ← w[t,t+τ);

(v, c)← reg(w′, σx(P ′), γ);

4 while c ≤ ν do

5 t′ ← t+ τ ;

6 if t′ < |w| then

7 τ ← τ + 1; w′ ← w′ · w(t′) ;

8 c← µ(w′, σx(v(P ′))) ;

9 if c > ν then

(v, c)← reg(w′, σx(P ′), γ) ;

10 else break ;

11 return t′

than ν: (i) either the estimated parameter valuation v

needs to be updated, or (ii) the current prefix does not

fit the shape under the constraint ν anymore with any

valuation v. In the first case, the procedure re-estimates

the new parameter valuation and re-computes µ (line

9). If the re-computed µ is smaller than or equal to ν

and we didn’t reach the end of the signal, we repeat

the match extension procedure. Otherwise, we termi-

nate the procedure and return the time index t′ where

the current match (if any, otherwise t′ equals to −∞)

ended.

5 Implementation and Evaluation

We implemented the Algo. 3 into a prototype tool using

the Python programming language. We employed pat-

tern matching of shape expressions to two applications

– detection of patterns in electro-cardiograms (ECG)

and oscillatory behaviors in an aircraft elevator control

system. All experiments were run on MacBook Pro with

the Intel Core i7 2.6 GHz processor and 16GB RAM.

5.1 Detection of Anomalous Patterns in ECG

In this case study, we consider ECG signals from the

PhysioBank database [14], which contains 549 records

from 290 subjects (209 male and 81 female, aged from

17 to 87). Each record includes 15 simultaneously mea-

sured signals, digitized at 1,000 samples per second,

with 16-bit resolution over a range of ±16.384mV. The

diagnostic classes for the subjects participating in the

Fig. 5: Recognizing pulses in ECG signals – RBBB char-

acteristics on channels v1, v6

Fig. 6: Recognizing pulses in ECG signals – Signal on

v6 channel

Fig. 7: Recognizing pulses in ECG signals – Magnified

anomalous pulse

recordings include cardio-vascular diseases such as my-

ocardial infarction, cardiomyopathy, dysrythmia or my-

ocardial hypertrophy.

Specification of an Anomalous Heart Pulse. We

consider the right bundle branch block (RBBB) heart

condition, in which the right ventricle is not directly

activated by impulses traveling through the right bun-

dle branch. Figure 5 depicts a visual characterization

of the RBBB heart condition as it can be observed on

channels v1 and v6.7 In this work, we concentrate on

specifying the shape of the pulse depicted in v6 using

7 The figure is under copyright by A. Rad.

10 Dejan Ničković et al.

shape expressions. The specification ϕ of the anomalous

v6 pulse consists of a sequence of 7 atomic shapes:

ϕ = exp(a1, b1, c1) : b1 > 0
· exp(a2, b2, c2) : b2 < 0
· lin(a3, b3) : a3 > 0
· lin(a4, b4) : a4 < 0
· lin(a5, b5) : a5 > 0
· exp(a6, b6, c6) : b6 > 0
· exp(a7, b7, c7) : b7 < 0

Evaluation. We evaluated our SE matching procedure

with respect to the recordings of a 70 year old pa-

tient that suffers from RBBB condition. The v6 channel

recording of the patient, shown in Figure 6, has 10,000

samples. In this experiment, we use CoD as our noise

metric.8 With noise threshold ν = 0.02, we were able to

identify all the segments that match ϕ in 28.98s. The

matches are depicted as colored vertical bands in Fig-

ure 6. Figure 7 zooms in on a single match and shows

the ideal shape that was inferred to match the pattern.

We now experimentally study how sensitive is the

quality of the procedure outcome with respect to the

noise threshold and the constraints on the parameters,

and how well the procedure scales with the size of the

input.

Sensitivity to the noise threshold and the constraints on

the parameters. Domain knowledge in a particular ap-

plication field can be used to derive more precise spec-

ifications. In the case of anomalous v6 pulses for pa-

tients with RBBB condition, such knowledge can be

for instance used to refine its specification ϕ by further

constraining the slope a3 to be greater than 0.5, result-

ing in specification ϕ′. We demonstrate the impact of

the noise threshold to the quality of pattern matching

in the cases of under-specified (ϕ) and over-specified

(ϕ′) shape expressions. Table 1a shows the results of

the experiments, where column |H| denotes the num-

ber of segments matched by the inspection of the sig-

nal by a human with domain knowledge and columns

|Mν(ϕ)| and |Mν(ϕ′)| denotes the number of the seg-

ments matching the expressions ϕ and ϕ′ by our pro-

cedure, respectively.

We first observe that domain knowledge improves

the quality of both the specification the robustness of

the monitor. Second, our approach can result in miss-

ing patterns or detecting false patterns. This result is

expected – very low ν enables to only match shapes

that are very close to the ideal one, while very high ν

results in matching shapes that are far away from the

8 We recall that ν = 0 denotes zero noise tolerance and
ν = 1 allows arbitrary level of noise.

Table 1: Experimental Results

(a) Sensitivity to the noise threshold

ν |H| |Mν(ϕ)| |Mν(ϕ′)|

0.70 4 9 4

0.24 4 7 4

0.20 4 5 4

0.10 4 4 4

0.02 4 4 4

0.01 4 0 0

(b) Runtime and memory requirements

Num. Runtime Mem.

Samples (s) (MB)

1,000 0.46 33.13

2,500 1.43 48.82

5,000 3.39 70.80

7,500 6.39 72.83

10,000 10.12 89.18

specification. Hence, our procedure may require tuning

parameters.

Scalability. We now evaluate the scalability of our pro-

cedure with respect to the size of the signal, taking into

account the computation time and the memory require-

ments. Table 1b summarizes the results. The computa-

tion time in this experiment exhibits an almost linear

behavior, while the memory consumption appears to

grow in a sub-linear fashion with respect to the size of

the input.

5.2 Detection of Ringing in an Aircraft Elevator

Control System

In many electronics applications, step response is used

to study how the system responds to sudden changes

in inputs. Ringing is an oscillation in the output signal,

which is encountered in response to a step in input. It

is considered to be an undesirable behavior, which nev-

ertheless cannot be fully avoided. It is hence important

to investigate properties of the oscillations (amplitude,

frequency, etc.) to determine the quality of the output

response.

We detect and study the ringing behavior in an air-

craft elevator control system [13] with SEs. An elevator

is a flight control surface that controls movement about

the lateral axis of an aircraft. We use a Simulink model

of a redundant actuator control system with one eleva-

tor on the left and one on the right side, each equipped

with two hydraulic actuators (see Figure 8). The actu-

Specifying and Detecting Temporal Patterns with Shape Expressions 11

ri
g

h
t

o
u

te
r

hydraulic
system 2

le
ft

 o
u

te
r

ac
tu

at
o

r

Right Elevator

hydraulic hydraulic
system 1 system 3

PFCU2

LDL RDL

PFCU1

LIO RIO

ac
tu

at
o
r

ac
tu

at
o
r

ac
tu

at
o
r

le
ft

 i
n

n
er

ri
g

h
t

in
n

er

Left Elevator

Fig. 8: Architecture of the aircraft elevator control sys-

tem.

Fig. 9: Aircraft Elevator Control System – Step Re-

sponse.

ators can position the elevator, but only one shall be

active at any point in time. There are 3 hydraulic sys-

tems that drive the 4 actuators: the left outer actuator

(LIO), the right outer actuator (RIO), the left inner

actuator (LDL) and the right inner actuator (RDL),

organized in 2 Primary Flight Control Units (PFCU).

In essence, the pilot gives a command with the intended

position of the aircraft, which must be followed by the

left and right elevators. When the pilot gives a step

command, this results in the ringing response by the

control system, as shown in Figure 9.

Specification of a Ringing Behavior. We are in-

terested in detecting both the rising and falling edge

and the subsequent ringing behavior. We chose to spec-

ify such behavior as a line, followed by a sinc wave

(sinc(a, b, c, d, t) = a+ b sin(ct+d)ct+d), letting

ringingx = linx(a1, b1) : a1 > 0.5 · sincx(a2, b2, c2, d2)

Inferring Parameters of Ringing Patterns. Fig-

ure 10 shows the segments in the output response of the

aircraft elevator control system that match the ringing

pattern. We stimulate the system with input steps of

different amplitudes and show how this change in in-

puts affects the step response and the resulting ringing

Fig. 10: Aircraft Elevator Control System – Segments

matching ringing pattern.

Table 2: Parameters inferred from segments matching

ϕ.

Amp a1 b1 a2 b2 c2 d2

1 1.36 -8.98 -0.40 3.03 -2.05 17.73

2 2.83 -18.55 -1.51 2.83 -3.31 25.80

3 4.75 -30.75 -2.78 -8.76 -5.21 13.09

oscillations. For each response signal, we report the in-

ferred parameters in Table 2. We can observe that the

rising edge of the step response becomes steeper with

input steps of higher amplitude. We can also see that

both the amplitude and the frequency of the sinc mono-

tonically decrease with the input amplitude.

Specification of a Step followed by Ringing.

We have specified so far the ringing behavior as a

segment in the elevator signal (x). However, this ringing
behavior is usually triggered by a step segment in the

pilot command signal (y). We can specify this causal

relation between y and x by using concatenation. In

essence, the specification of a step in y followed by a

ringing behavior in x is formalized as follows:

ϕ = stepy · ringingx

where

stepy = liny(0, b1) · liny(0, b2, l) : l ≤ 0.3

Figure 11 depicts the two-dimensional segments that

match the specification ϕ. We note that the above speci-

fication does not discriminate between the nominal (first)

and the anomalous (second) pattern – both segments

match the expression. This happens because we do not

define any dependency between the absolute value of

the step, and the mean value (the amplitude) of the

sinc function defining the ringing behavior.

12 Dejan Ničković et al.

Fig. 11: Aircraft Elevator Control System – Segments

matching step followed by ringing pattern.

6 Conclusion

In this paper, we proposed shape expressions as a lan-

guage for specification of rich and complex temporal

patterns. We studied essential properties of shape ex-

pressions and developed an efficient heuristic pattern

matching procedure for this specification language. We

believe that this work explores the expressiveness bound-

aries of declarative specification languages.

We will pursue this work in several directions. We

will apply our technique to examples from more applica-

tion domains. We will study more sophisticated match-

ing methods that will minimize the need of tuning pa-

rameter constraints. We will compare more closely our

approach to the work on classical regular expression

matching on one hand, and purely machine learning

feature extraction methods on the other hand. We will

finally investigate the application of shape expressions

in testing CPS with the particular focus on generating

test cases from such a specification language.

Acknowledgments

This research was supported by the Austrian Science

Fund (FWF) under grants S11402-N23 (RiSE/SHiNE)

and Z211-N23 (Wittgenstein Award), by the Produc-

tive 4.0 project (ECSEL 737459) and by the National

Science Foundation under the FMitF grant CCF-1837131.

References

1. IEEE standard on pulse measurement and analysis by
objective techniques. IEEE Std. 181-1977, 1977.

2. Houssam Abbas, Alena Rodionova, Ezio Bartocci,
Scott A Smolka, and Radu Grosu. Quantitative regu-
lar expressions for arrhythmia detection algorithms. In
International Conference on Computational Methods in
Systems Biology, pages 23–39. Springer, 2017.

3. Rajeev Alur, Dana Fisman, and Mukund Raghothaman.
Regular programming for quantitative properties of data
streams. In European Symposium on Programming,
pages 15–40. Springer, 2016.

4. Rajeev Alur, Konstantinos Mamouras, and Caleb Stan-
ford. Modular quantitative monitoring. Proceedings
of the ACM on Programming Languages, 3(POPL):50,
2019.

5. Étienne André, Ichiro Hasuo, and Masaki Waga. Offline
timed pattern matching under uncertainty. In 23rd In-
ternational Conference on Engineering of Complex Com-
puter Systems, ICECCS 2018, Melbourne, Australia, De-
cember 12-14, 2018, pages 10–20, 2018.

6. Eugene Asarin, Paul Caspi, and Oded Maler. A Kleene
theorem for timed automata. In Logic in Computer Sci-
ence (LICS), pages 160–171, 1997.

7. Eugene Asarin, Paul Caspi, and Oded Maler. Timed reg-
ular expressions. Journal of ACM, 49(2):172–206, 2002.

8. Alexey Bakhirkin, Thomas Ferrère, Oded Maler, and
Dogan Ulus. On the quantitative semantics of regular
expressions over real-valued signals. In Formal Mod-
eling and Analysis of Timed Systems - 15th Interna-
tional Conference, FORMATS 2017, Berlin, Germany,
September 5-7, 2017, Proceedings, pages 189–206, 2017.

9. Alexey Bakhirkin, Thomas Ferrère, Dejan Nickovic, Oded
Maler, and Eugene Asarin. Online timed pattern match-
ing using automata. In International Conference on
Formal Modeling and Analysis of Timed Systems, pages
215–232. Springer, 2018.

10. Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez,
Will Robinson, Bernd Finkbeiner, Henny B. Sipma,
Sandeep Mehrotra, and Zohar Manna. LOLA: runtime
monitoring of synchronous systems. In 12th International
Symposium on Temporal Representation and Reasoning
(TIME 2005), 23-25 June 2005, Burlington, Vermont,
USA, pages 166–174, 2005.

11. Peter Faymonville, Bernd Finkbeiner, Sebastian
Schirmer, and Hazem Torfah. A stream-based specifi-
cation language for network monitoring. In Runtime
Verification - 16th International Conference, RV 2016,
Madrid, Spain, September 23-30, 2016, Proceedings,
pages 152–168, 2016.

12. Pierre Geurts. Pattern extraction for time series clas-
sification. In European Conference on Principles of
Data Mining and Knowledge Discovery, pages 115–127.
Springer, 2001.

13. Jason Ghidella and Pieter Mosterman. Requirements-
based testing in aircraft control design. In AIAA Model-
ing and Simulation Technologies Conference and Exhibit,
page 5886, 2005.

14. Ary L Goldberger, Luis AN Amaral, Leon Glass, Jef-
frey M Hausdorff, Plamen Ch Ivanov, Roger G Mark,
Joseph E Mietus, George B Moody, Chung-Kang Peng,
and H Eugene Stanley. Physiobank, physiotoolkit, and
physionet: components of a new research resource for
complex physiologic signals. Circulation, 101(23):e215–
e220, 2000.

15. Felipe Gorostiaga and César Sánchez. Striver: Stream
runtime verification for real-time event-streams. In Run-
time Verification - 18th International Conference, RV
2018, Limassol, Cyprus, November 10-13, 2018, Proceed-
ings, pages 282–298, 2018.

16. Sylvain Hallé and Raphaël Khoury. Event stream pro-
cessing with beepbeep 3. In RV-CuBES 2017. An Inter-
national Workshop on Competitions, Usability, Bench-
marks, Evaluation, and Standardisation for Runtime

Specifying and Detecting Temporal Patterns with Shape Expressions 13

Verification Tools, September 15, 2017, Seattle, WA,
USA, pages 81–88, 2017.

17. Martin Leucker, César Sánchez, Torben Scheffel, Malte
Schmitz, and Alexander Schramm. Tessla: runtime ver-
ification of non-synchronized real-time streams. In Pro-
ceedings of the 33rd Annual ACM Symposium on Applied
Computing, SAC 2018, Pau, France, April 09-13, 2018,
pages 1925–1933, 2018.

18. Oded Maler and Dejan Nickovic. Monitoring temporal
properties of continuous signals. In Formal Techniques,
Modelling and Analysis of Timed and Fault-Tolerant
Systems, Joint International Conferences on Formal
Modelling and Analysis of Timed Systems, FORMATS
2004 and Formal Techniques in Real-Time and Fault-
Tolerant Systems, FTRTFT 2004, Grenoble, France,
September 22-24, 2004, Proceedings, pages 152–166,
2004.

19. Konstantinos Mamouras, Mukund Raghothaman, Rajeev
Alur, Zachary G Ives, and Sanjeev Khanna. StreamQRE:
Modular specification and efficient evaluation of quanti-
tative queries over streaming data. In ACM SIGPLAN
Notices, volume 52, pages 693–708. ACM, 2017.

20. Dejan Nickovic, Xin Qin, Thomas Ferrère, Cristinel
Mateis, and Jyotirmoy V. Deshmukh. Shape expressions
for specifying and extracting signal features. In Runtime
Verification - 19th International Conference, RV 2019,
Porto, Portugal, October 8-11, 2019, Proceedings, pages
292–309, 2019.

21. Robert T Olszewski. Generalized feature extraction for
structural pattern recognition in time-series data. Tech-
nical report, Carnegie-Mellon Univ. School of Computer
Science, 2001.

22. Thanawin Rakthanmanon, Bilson Campana, Abdullah
Mueen, Gustavo Batista, Brandon Westover, Qiang Zhu,
Jesin Zakaria, and Eamonn Keogh. Searching and mining
trillions of time series subsequences under dynamic time
warping. In Proceedings of the 18th ACM SIGKDD in-
ternational conference on Knowledge discovery and data
mining, pages 262–270. ACM, 2012.

23. Dogan Ulus. Montre: A tool for monitoring timed regu-
lar expressions. In Computer Aided Verification - 29th
International Conference, CAV 2017, Heidelberg, Ger-

many, July 24-28, 2017, Proceedings, Part I, pages 329–
335, 2017.

24. Dogan Ulus, Thomas Ferrère, Eugene Asarin, and Oded
Maler. Timed pattern matching. In Formal Modeling and
Analysis of Timed Systems (FORMATS), pages 222–236,
2014.

25. Dogan Ulus, Thomas Ferrère, Eugene Asarin, and Oded
Maler. Online timed pattern matching using derivatives.
In Tools and Algorithms for the Construction and Analy-
sis of Systems - 22nd International Conference, TACAS
2016, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2016, Eind-
hoven, The Netherlands, April 2-8, 2016, Proceedings,
pages 736–751, 2016.

26. Masaki Waga and Ichiro Hasuo. Moore-machine filter-
ing for timed and untimed pattern matching. IEEE
Trans. on CAD of Integrated Circuits and Systems,
37(11):2649–2660, 2018.

27. Masaki Waga, Ichiro Hasuo, and Kohei Suenaga. Effi-
cient online timed pattern matching by automata-based
skipping. In Formal Modeling and Analysis of Timed
Systems - 15th International Conference, FORMATS
2017, Berlin, Germany, September 5-7, 2017, Proceed-
ings, pages 224–243, 2017.

28. Masaki Waga, Ichiro Hasuo, and Kohei Suenaga.
MONAA: A tool for timed pattern matching with
automata-based acceleration. In 3rd Workshop on
Monitoring and Testing of Cyber-Physical Systems,
MT@CPSWeek 2018, Porto, Portugal, April 10, 2018,
pages 14–15, 2018.

29. Florian Wenig, Peter Klanatsky, Christian Heschl,
Cristinel Mateis, and Nickovic Dejan. Exponential pat-
tern recognition for deriving air change rates from CO2
data. In 26th IEEE International Symposium on Indus-
trial Electronics, ISIE 2017, Edinburgh, United King-
dom, June 19-21, 2017, pages 1507–1512, 2017.

30. Lexiang Ye and Eamonn J. Keogh. Time series shapelets:
a new primitive for data mining. In Proceedings of
the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Paris, France,
June 28 - July 1, 2009, pages 947–956, 2009.

