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Abstract

This thesis is concerned with the monitoring of mixed-signal circuit simulations. In the
field of hardware verification, the use of declarative property languages in combination
with simulation is now standard practice. However the lack of features to specify asyn-
chronous behavior, or the insufficient integration of verification results, makes existing
assertion and measurement languages unusable in the mixed-signal setting.

We propose several theoretical and practical tools for the description and automatic
monitoring of such behaviors, that feature both discrete and continuous aspects. For
this we build on previous work on real-time extensions of temporal logic and regular
expressions as follows.

Efficient algorithms for computing the distance from some simulation trace to tem-
poral logic specifications are given, with complexity comparable to that of traditional
monitoring. An original diagnostic procedure is provided for the systematic debugging
of such traces. The monitoring of continuous behaviors is also extended to other forms
of assertions based on regular expressions. These expressions form the basis of our mea-
surement language, which describes conjointly a measure and the patterns over which
that measure should be taken.

We finish by showing how measurements currently implemented in analog circuits
simulators can be ported to digital descriptions, this way extending structured verification
methodologies used for digital designs toward mixed-signal.
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Résumé

L’objet de cette thèse est le monitorage des simulations de circuit en signaux mixtes
analogique / digital. Dans le domaine de la vérification de matériel, l’utilisation de
langages déclaratifs pour la description de propriété, combinés avec la simulation, est
dorénavant pratique courante. Cependant, par absence de fonctionalités dédiées à la spé-
cification de comportement asynchrones, ou dû à l’intégration insuffisante des résultats
de vérification, les assertions et mesures telles que couramment implantées sont presque
inutilisables dans un contexte de signaux mixtes.

Nous proposons plusieurs outils théoriques et pratiques pour la formalisation et le
monitorage de tels comportements, à la jonction de mondes discret et continu. Pour
ce faire, nous nous appuyons sur des recherches antérieures dans le domaine des spé-
cifications temps-réel, particulièrement en ce qui concerne la logique temporelle et les
expressions régulières, et obtenons les résultats suivants.

Des algorithmes pour calculer la distance d’une trace de simulation à une propriété
de logique temporelle sont décrits; ils garantissent une complexité comparable à celle
du problème de monitorage correspondant. Une procédure originale pour le débogage
systématique d’une telle trace relativement à une formule de logique temporelle est
donnée. Le monitorage des comportements continus est ensuite étendu à d’autres formes
d’assertions, basées sur les expressions régulières. Ces expressions forment la base de
notre langage de description de mesures, qui permet de spécifier conjointement des
intervalles temporels à observer et un certain type de mesure à appliquer.

Nous montrons enfin comment étendre le champ d’application des outils de mesure
existant dans un simulateur de circuits analogiques, pour une utilisation dans les de-
scriptions digitales. Ce faisant, nous rendons possible l’utilisation des méthodologies de
vérification hiérarchiques venant du monde digital dans un contexte de signaux mixtes.
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Introduction

Context

Complex engineered systems such as integrated circuits are designed using models that
describe the behavior of their components in a mechanistic way. These models are then
used to simulate various scenarios of the behavior of the system in question; designers
monitor the simulated behavior in order to evaluate the system’s performance and con-
formance to specifications. As systems tend to be larger and more complex, simulation
becomes more expensive, the number of possible scenarios grows, and the criteria accord-
ing to which behaviors are evaluated also become more complex and less intuitive. This
part of the design process, called verification, becomes costly and error-prone, demanding
the designer or verification engineer to do many long simulations and check the results
against complex requirements.

This thesis is concerned with making the monitoring of simulations more efficient
and reliable, as automatic as possible. It is centered around formalisms for specifying
requirements, expected properties and performance measures that can be the basis for
automatic monitoring, liberating the engineers from these tedious tasks. A large part
of the thesis consists of novel theoretical and algorithmic contributions, related to for-
malisms based on temporal logic and regular expressions. These results are closer to
the ‘R’ side of the R&D pipeline. The thesis also has a concrete applicative ingredient,
namely, the implementation of such ideas in the context of existing industrial tools in
the domain of electronic design automation (EDA) and more specifically for the design
of analog and mixed-signal (AMS) circuits.

In general, mixed-signal verification of integrated circuits is an increasing source of
challenges. This is due to the vastly different concerns, cultures, and modes of operation
of digital and analog parts of the design and verification effort. As a result the amount of
time spent on mixed-signal verification in a design project is becoming longer, with design
errors escaping verification due to incompatible tools and approaches. To some extent,
structured digital methodologies can be applied on mixed-signal circuits, by integrating
analog verification results. However the further automation of mixed-signal verification,
especially regarding mixed behaviors, requires novel ideas.

This thesis was conducted under the CIFRE framework in collaboration with Mentor
Graphics, a leading software provider in EDA. In particular the work has taken place as
part of the team in charge of developing Questa® ADMSTM, a mixed-signal simulator.
The collaboration gave invaluable insight into the domain, and also inspired several
research directions.

1



INTRODUCTION 2

Overview

Monitoring The verification of systems by means of simulation involves the checking
of each trace for correctness. In practice this monitoring activity can be entirely manual,
proceeding by simple visual inspection of simulation traces in some waveform viewer.
However for systems over a certain complexity, the verification effort always requires
some automation. This can be achieved in one of several ways. For electronic circuits,
dedicated monitors can be programmed as additional components. These monitors are
integrated along with design blocks, or other verification components in the simulated
testbench. In the case of analog monitors there are specific concerns of accuracy and
repeatability, which we attempt to address. Another possibility is to use dedicated mea-
surement and assertion languages. These high level languages are compiled separately
into software monitors, that operate transparently along the simulation.

Declarative Languages Programming monitors that check simulation results can be
a repetitive and error-prone task for designers and verification engineers. The use of
declarative languages that are high-level and concise can help overcome such issues. Dig-
ital assertion languages enable using temporal logic and regular expressions, separately
or in combination, to describe the system’s sequential behavior. These assertions are
compiled into procedural monitors by the simulation environment, and their violations
are reported alongside other simulation results. In addition to automating the monitoring
of properties, assertions enable further analysis such as marking the simulation trace for
time intervals where some fault occurs. We provide extensions to the digital assertion
framework towards the mixed-signal domain.

Continuous-Time Properties In the mixed-signal setting, we are primarily interested
in the time-domain behavior of circuits. While in this regard digital circuits are mainly
synchronous, analog circuits are mainly asynchronous. However after quantizing analog
signals according to some thresholds, time-domain behaviors can usually be expressed
as a combination of sequential behavior and timing constraints. The theory of real-time
systems modeling and specification led to the development of specification languages
based on temporal logic and regular expressions enhancing formal language theory with
real-time aspects. Such extensions are praticularly relevant in our context. Real-time
specifications do not however easily translate to effective, computational descriptions.
We give algorithms for the monitoring of real-time specification languages.

Quantitative Aspects Some properties of systems called specifications are evaluated on
a given simulation as being true or false, while other properties called measures yield real
values. A measure can form a specification when asserted to lie in some range of values,
as in “the average value of x is less than 2”. Conversely a specification is turned into
a measure by considering the distance from the given simulation trace to satisfying it,
or violating it. This distance is also called the robustness of the simulation trace relative
to the property. We give efficient algorithms for evaluating this distance, in the case of
temporal logic specifications. In general the formalization of measures does not need to
rely on strong theoretical notions, as digital assertions do with formal language theory.



INTRODUCTION 3

Measurement languages are used routinely in analog circuits verification, and provide
similar benefits to those obtained through the use of digital assertions. In a mixed-signal
setting it makes sense to only measure some behavior over periods of time the circuit
operates in some mode, that we in turn detect according to a sequence of events. We show
how measures can be formalized this way, enabling further automation of mixed-signal
verification.

Interaction with Simulation The monitoring process takes place either during simu-
lation, we say online, or after the simulation, we say offline. Offline monitoring is done
by storing all the signals associated with some variable appearing in the property under
consideration. Having the option to process these signals moving back and forth in time,
despite causing an overhead in memory consumption often simplifies treatment. Online
monitoring offers a lot of possibilities in terms of interaction with the simulation. For
instance a simulation may be stopped as soon as some assertion is violated, saving pre-
cious time for designers. Measurements performed in an online fashion can also take
part in the stimulus generation process, improving the coverage or driving the design
towards erroneous behavior. We give a framework to generalize the implementation of
analog measurements into digital testbenches in an online fashion.

Contributions

Monitoring Timed Behaviors Timed Regular Expressions (TRE) [25] are a convenient
specification language for continuous-time behaviors. We extend the monitoring of
continuous-time behaviors to specifications written using TRE. Our monitoring approach
is similar in spirit to that of [83] for Metric Temporal Logic (MTL) [73]. While for
temporal logic the domain to explore is the set of times at which the formula is satisfied,
for regular expressions the domain to explore is the set of start time and end time pairs at
which the expression is matched. We show that this set of time pairs can be decomposed
into zones, simple convex sets used in timed systems formal verification. Results appear
here as published in [110], but with additional focus on monitoring and integration
with temporal logic. Additional results, namely the extension of this work to online
monitoring, appear in [111].

Robustness of Continuous Behaviors The specification language Signal Temporal
Logic (STL) [83], designed for mixed-signal behaviors, can be supplemented with a
robustness indicator [53]. An important application of this robustness indicator is its
use as a continuous variable that can be subject to optimization; this allows to detect
bugs by varying simulation parameters towards minimizing the robustness value as in
[67]. We develop new algorithms for the robust monitoring of Signal Temporal Logic
(STL) based on a piecewise linear representation of signals. Among other results we
use an algorithm described in [79] to guarantee a complexity comparable to that of the
non-robust monitoring, and in particular linear in the length of the trace. This work was
first exposed in [45] considering the case of (continuous) real signals; here we consider
the more general case of traces with both Boolean and real signals.
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Diagnostics of Timed Behaviors Metric Temporal Logic has been the object of many
theoretical investigations, and also had some applicative success with its extension to real
signals STL. However the continuous-time interpretation of MTL is sometimes considered
not intuitive by verification practitioners. To facilitate further adoption of MTL and its
variants we investigate the diagnostics problem. The method that we propose makes
it possible to debug a trace relative some specification, by finding a (minimal) set of
segments of that trace sufficient to cause the violation of the specification. Solving this
problem gives new insight into causality in continuous-time behaviors, with the notion
of temporal implicants. This research also appears in [56]; it is presented here focusing
on continuous-time traces, a characteristic specific to mixed-signal behaviors.

Declarative Measurements Measurements as defined in analog simulators provide a
convenient way to extract performance indicators. For mixed-signal behaviors we found
it advantageous to separate the measure itself from the description of time periods over
which that measure takes place. We developed following this principle a declarative
measurement language based on Signal Regular Expressions (SRE), an extension of
TRE to real signals for this purpose, and basic continuous measures such as duration,
minimum, or maximum of some signal. Our language is particularly applicable to mixed-
signal simulations, for which measure time periods tend to be delimited by sequences of
events corresponding discrete mode changes. This work initially appeared in [57], and
is reproduced here using a simpler yet more expressive formalism.

Testbench Measurements A notable difficulty in mixed-signal verification is that struc-
tured verification methodologies rely on a digital testbench, while measurements are
performed using simulator command located elsewhere, in analog descriptions and simu-
lation command files. We propose to make the functionality of these commands available
in the form of system tasks, modules and classes in hardware description (or verification)
languages, allowing to access the same algorithms. We use a uniform representation of
input, output, and control signals in a measurement, and obtain the basis of a reusable
library of measurement for mixed-signal verification.

Organization

The thesis is organized as follows. Chapter 1 describes the context, motivation and state of
the art in the mixed-signal verification domain. Chapters 2–3 lay down the foundations
of our approach. In particular Chapter 2 demonstrates how discrete and continuous
signals, sampling clocks, and timing checks can be integrated in the same assertion
framework, while Chapter 3 exposes a monitoring algorithm for metric temporal logic
that we later extend. Chapters 4–7 present research contributions, namely diagnosing
metric temporal logic specifications and measuring their robustness, monitoring timed
regular expressions and measuring continuous behaviors using such expressions. Readers
who are not interested in the specific application domain can restrict themselves to
these chapters while those interested primarily in AMS verification can read them lightly.
Chapter 8 returns to the applicative domain and demonstrates how measurements defined
by analog simulators can be brought into a digital testbench.
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Notation

We use the following notational conventions. Lower-case letters typically stand for
numbers (a, b, . . .) or functions ( f , g, . . .). Upper-case letters stand for sets (A, B, . . .),
and calligraphic letters stand for sets of sets (A ,B , . . .). As customary we denote by N,
and R the set of natural, and real numbers respectively. We use similar notation for sets
(A,B, . . .) that are fixed throughout a section or chapter.

The set of functions from A to B is denoted BA. The powerset (set of subsets) of A is
denoted 2A as usual. We denote by ∪A the union ofA , with by definition ∪A =

⋃

A∈A A.
Truth values are represented using Boolean numbers 0 and 1. Functions from A to {0, 1}
are called predicates over A. Predicates P over A are identified with subsets of A, that is,
we do not distinguish {0, 1}A from 2A, and for some a ∈ A we write equivalently P(a) = 1
in place of a ∈ P. Similarly, binary relations over A are identified with predicates over
A2 = A× A, equivalently with subsets of A2. For function f continuous at a ∈ R we let
f (a+) and f (a−) stand for the right-limit and left-limit of f at a, respectively.

A valuation is a mapping of variable symbols to some value domain. Variable symbols
are lower-case letters (p, q, . . .), and valuations are written using bold letters (u, v, . . .).
We denote qv the value of variable q according to valuation v. Formal statements such
as formulas and expressions are built from variable symbols and operators according to
some grammar. We use Greek letters (ϕ,ψ, . . .) to denote such formal statements and
associated syntactic categories.

Algorithms are written in pseudo-code using lower-case letters for built-in routines,
small capitals for user-defined routines, and bold letters for control flow instructions.
We write mathematical symbols directly in pseudo-code when the implementation of
the operation they denote is trivial or discussed elsewhere. Event-driven concurrent
procedures are written using a syntax loosely based on Verilog, and their implementation
discussed using Verilog constructs. This is purely conventional and does not intend to
restrict the implementability to one particular language.



1

Mixed-Signal Verification

In this chapter we present the applicative context of this thesis in Electronic Design Au-
tomation (EDA). The production of integrated circuits requires a particular phase that
involves the use of mixed-signal simulation. The conjoint use of digital and analog models
is in particular necessary to analyze the interaction between parts of the circuit imple-
menting the two kinds of functionality. This enables modeling concisely Boolean and
finite-state aspects in conjunction with some electrical effects. The simulation proceeds by
synchronized execution of digital and analog simulators. Thus in a mixed-signal context
all the usual analog and digital checks can performed; however the interaction of digital
and analog parts creates the need for a specific verification effort. We briefly present
assertions and measurements used in practice, and their limitations for the specification
of mixed-signal behaviors.

1.1 Circuit Design

An increasing number of applications require a computerized system to interact with
its physical environment in a non-trivial manner. In such cyber-physical systems [15],
most functionality is sometimes implemented on a single integrated circuit. This trend
is reflected in the notion of system on chip (SoC). In the presence of both digital and
analog functionality, we talk of mixed-signal circuit [75]. The design of digital or mixed
signal integrated circuits1 involves a simulation technique also dubbed mixed-signal.

The correct operation of an integrated circuit is usually verified by means of repeated
simulations. During the specification phase the system is divided into large blocks, each
implementing a particular function, and such that their composition implements all the
desired functionality of the system. Blocks may be designed specifically for a given system,
or reused from previous systems designed either by the same manufacturer or purchased
from an external provider. In general, the process of creating an integrated circuit can be
decomposed into the following phases: (1) specification; (2) design; (3) verification; (4)
production; (5) testing. To some extent, the specification, design, and verification phases

1Digital-intent circuits can also be considered as mixed-signal, when one takes into account the analog
sub-circuits needed for their own operation, in particular for supplying power, or generating clock signals.
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can be performed concurrently on all sub-systems. Such phases are then repeated on a
larger system made of such blocks, see [60]. Verification of a sub-circuit relative to its
environment typically ensures that its input-output relation conforms to some protocol
or “contract”, such as a range of operation for analog circuits.

Naturally, it is preferable to perform the verification as early as possible in the de-
velopment process, and it has been shown that the cost of fixing an error increases
exponentially with time [61]. When an error is only observed on the end product, fixing
it requires identifying where the error occurred and applying again downstream phases
after the error has been fixed. The methods we propose in this thesis can be applied for
the early detection of errors in mixed-signal circuit designs.

1.2 Modeling

A circuit can be modeled in dedicated hardware description languages (HDL), or written
in some other format specific to analog simulators. These computerized descriptions are
used for simulation, but also as input to other software tools for synthesis, place and route,
etc. to generate the blueprint of the silicon chip itself. In the course of the complete design
cycle of some integrated circuit, a given sub-circuit can have several models. Various
levels of abstractions can be considered: real-number, behavioral, register transfer level,
gate level, or electrical, to name but a few. The use of more than one abstraction enables
considering necessary trade-offs between simulation speed and accuracy. Abstract models,
ignoring some details or internal aspects of the circuit behavior, can be advantageous for
the performance of the simulation. Their use is essential in simulating larger portions of
a design. In this scenario, the aim is to explore the circuit behavior in sufficient detail to
ensure that the practical realization will conform to the specifications.

Hardware description languages such as Verilog [1] and VHDL [4] allow a represen-
tation of digital circuits close to that of concurrent computer programs. The state of the
system is stored in some Boolean, integer, and floating-point variables. Such variables are
updated via the traditional programming control structure with branching and looping
constructs. An example of digital description appears Figure 1.1. In general, a digital
description is decomposed into modules, which represent sub-circuits. Modules declare a
list of ports, describing the interface, and procedural code, describing how port quantities
and the internal state are updated based on events and deterministic delays. The proce-
dural code has concurrent execution semantics. The synchronization of instructions is
handled by events, which correspond to the change of state of some variable. A statement
is executed on the occurrence of some event. It may in turn generate another event at a
later time, according to some scheduling policy or some explicit delay.

The de facto standard for simulating analog circuits is known under the name of
Simulation Program with Integrated Circuit Emphasis (SPICE) [92]. In this framework,
the circuit description is that of a network of devices. The devices can be for example
resistors, capacitors, or transistors. Their interconnection forms the circuit, and they are
implicitly translated to differential equations for simulation. Alternatively the analog cir-
cuit equations can be given explicitly, using analog and mixed-signal modeling languages
such as Verilog-AMS [9] and VHDL-AMS [2]. These languages enable decomposing the
functionality in modules, similarly to digital description languages. Analog modules
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always @(p)
if s = 1 then s := 2
else if s = 2 then s := 1
end if

end always
always @(q)

if s = 0 then s := 1
else if s = 1 then s := 0
end if

end always

0 1 2

q

q

p

p

p q

(a) (b)

Figure 1.1: Finite Automaton: (a) Digital description; (b) Transition graph.

analog
V(n0, n1) = a
V(n2, n1) = b I(n2, n1)

I(n0, n2) = c
d V(n0, n2)

d t
end analog n0

a

n1
b n2

c

(a) (b)

Figure 1.2: Linear electrical circuit: (a) AMS description; (b) Circuit schematic.

consist of a list of electrical ports, and procedural and equational analog statements. An
example of an analog description appears in Figure 1.2. Equations describing the behav-
ior of the model are collected across all analog statements. These languages also allow
combining analog and digital statements, describing discrete and continuous dynamics
conjointly in a mixed-signal model. Such models may naturally represent switched sys-
tems, continuous systems with discrete control; they may represent interface elements
such as analog to digital, and digital to analog converters.

Digital descriptions can be split into two parts. One part belongs to the design under
test (DUT), while the other part belongs to the testbench. In the DUT variables are static,
they exist throughout the simulation. The testbench can be thought of as representing
additional hardware blocks surrounding the DUT, or the software executing on the DUT.
This later part of the code is used to generate stimuli, observe and process the response.
Functionality in the testbench can be written using object oriented programming, in
some hardware verification languages (HVL) such as SystemVerilog [7]. In addition to
modules, testbench descriptions use constructs such as classes and interfaces. Variables
in these parts of a testbench can be dynamic, created and deleted during simulation.
Similar remarks can be made for analog descriptions. Part of the code, such as directed
current or voltage source, or measurement functions, is not part of the design. These
descriptions differ in that contrarily to the design they describe ideal behavior.
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1.3 Simulation

A given DUT and environment featuring both digital and analog parts can be simulated in
a software tool such as Mentor Graphics’ Questa® ADMSTM [11]. Mixed-signal simulators
are usually formed by assembling an event-driven simulator with an electrical circuit
simulator [29]. Specific functionality enables splitting circuit descriptions between analog
and digital parts, potentially creating additional components not present in the circuit
description when some module is this way split. In simulation, digital and analog parts
interact through boundary elements. These elements are inserted automatically at the
interface between digital and analog parts. A digital to analog boundary element can
be realized as a digitally controlled source (possibly with load); an analog to digital
boundary element may be implemented as a quantizer (possibly with hysteresis).

The event-driven simulator compiles digital HDL instructions and executes the result-
ing program in a similar fashion to that for software environments. Additional features of
hardware models are taken into account. The scheduling of events follows a standardized
scheme as, for example, with Verilog [1]. Hardware descriptions allow for concurrent
events, which can be executed in arbitrary order. This may create race conditions, in
which the update of two quantities can happen in a non-deterministic order.

The electrical circuit simulator gathers equations from the given description, and
provides a numerical solution up to the desired precision [93]. Such equations are
derived from devices, and connectivity. Device equations are given explicitly in a model.
Connectivity equations are determined according to Kirchhoff’s current and voltage laws
at each circuit node. The system of equations obtained is discretized according to a
numerical integration scheme, such as Backward Euler, or Gear [59]. Discrete equations
are solved at each time step via iterative methods such as Newton-Raphson.

A mixed-signal simulator alternates analog and digital time steps, in which analog
and digital quantities are updated for after some given amount of time has elapsed. The
size of digital time steps is determined by events scheduled according to the execution
of digital modules, with fixed delays that are multiple of some time precision. The size
of analog time steps depends on the numerical stability of the equations to solve, the
estimated accuracy of the current solution, and user-provided thresholds for which the
times of crossing need to be precisely detected. In particular, a different set of equations
can be used when quantity x is below, and when it is above some threshold c, due to
analog modeling or mixed-signal interaction. This can be indicated to the simulator
using threshold crossing events, that we may denote ↑(x ≥ c) for instance, whose effect
is to force the simulator to make a step at the time where some quantity x crosses a
predefined threshold c, here crossing it upward.

In this thesis we only consider time-domain properties; in a purely analog setting,
other types of properties such as frequency-domain can be considered. The outcome of a
time-domain simulation is a trace recording the evolution over time of digital and analog
quantities of interest. Digital quantities are considered piecewise constant, following
event-driven semantics. Analog quantities are considered piecewise polynomial. The
interpolation scheme (naturally associated with the numerical integration scheme) may
vary along the simulation – potentially requiring polynomials of degree more than one.
However more samples can be added to the trace in order to ensure that in offline analysis,
linear interpolation is always sufficient.
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1.4 Verification

The verification of mixed-signal circuits often proceeds with purely digital and purely
analog verification methods, based on what type of property is observed. Let us first
introduce the verification practice in each separate domain, and then discuss mixed-signal
verification specifically.

1.4.1 Digital

Simulation-based (dynamic) verification and formal (static) verification of digital circuits
are well-established in industrial practice [76]. Formal verification of digital circuits
was initially based on theorem proving [33], and now mostly relies on model checking
[35]. In the model checking activity, the system model is checked against some formal
statement or property, also called an assertion. Formal methods are limited in application
to (critical) sub-circuits with manageable size, the mainstream approach to verification
remains simulation-based. Like formal verification, simulation-based verification can
make use of formal property languages. The objective here is to check that all simulations
conform to the specification. The use of formal property languages in the perspective of
checking simulations is known as assertion-based verification.

In order to ensure that most or all aspects of the circuit’s functionality are exercised
in simulation, the generation of stimuli to the circuit can be based on coverage indica-
tors. We talk in that case of coverage-driven verification, and the use of randomization in
that perspective leads to the notion of constrained-random simulation. Due to the time
investment needed to develop this kind of testbench, it should be as reusable as possible.
For this one may use object-oriented programming constructs. Combining all such tech-
niques can be done using the Universal Verification Methodology (UVM), developed in
collaboration between the major electronic design automation suppliers [8]. This effort
resulted in a set of SystemVerilog classes to easily implement verification techniques in a
digital testbench.

Checking that the DUT reacts correctly to the given stimuli can be done by imple-
menting monitors directly as modules in HDL or classes in HVL. An orthogonal approach
is to use assertions [39]. In hardware design, an assertion is a piece of code specifying
a sequential property, ranging across several clock cycles. The two principal assertion
languages for digital circuit design are called SystemVerilog Assertions (SVA) [1] and
Property Specification Language (PSL) [6]. The former is integrated in the hardware
description language SystemVerilog, while the latter may be used together with any
hardware description language, according to simulator support.

1.4.2 Analog

Analog verification proceeds by repeated simulations under varying parameter values,
with the aim of exhibiting the quality of a single behavior. This can take several forms,
with a so-called corners simulation exploring extreme values, Monte Carlo simulation
using randomized values, or more elaborate scenarios using intermediate simulations
results to guide the choice of parameters. This practice dominates the verification of
small analog blocks and tends to be less present for larger blocks or at system level.
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Analog verification usually features a first phase, in which meaningful quantities are
extracted, according to the circuit intent. We talk of measurements, by analogy with
physical measurements taking place during the testing phase – here we mean virtual
measurements, applied to simulated values. The quantities extracted from the simulation
include period, slew rate, duty cycle, and rise time. Generic functions such as integral,
maximum, can also be used for that purpose. Measured values can be checked against
bounds, or composed into more elaborate indicators. Measurement commands reside in
the run management file, or may directly feature in a SPICE netlist.

Once a meaningful quantity has been extracted, the verification primarily consists in
checking that it is within the correct range, also called Safe Operating Area (SOA). The
notion of SOA initially applied to the analysis of voltages and currents at transistors ports,
and by extension it applies to the analysis of arbitrary quantities measured in the context
of a simulation. Analog simulators allow the designer to check such safety properties
automatically, via dedicated commands. Such specifications can handle conditional state-
ments based on arithmetic expressions and comparison operators, and timing relaxation
in which the unsafe area may be entered for a specified maximum amount of time.

1.4.3 Mixed-Signal

Mixed-signal functionality may relate the time-domain behavior of digital signals and
analog signals. This is the case for analog-to-digital or digital-to-analog converter circuits.
There are established techniques to specify and evaluate the performance of this particular
class of circuits. Digital signals may have lower rate of change than analog, when they
act as control for the analog part. In other situations analog signals may be the ones with
a lower rate of change. In such cases one part may be approximated as constant, and
the verification is then repeated over many modes, or parameter values. In that sense,
outside of converters, in mixed-signal circuits the temporal interaction of analog and
digital signals is relatively rare.

The verification of a mixed-signal design is said to be analog-centric, or digital-centric
depending on the principal intent of the design. The verification of analog circuits is
less structured, and in analog-centric verification mixed-signal does not require a special
treatment. On the other hand, digital circuits typically undergo a structured verification
process. Support for verifying analog functionality in a digital-centric environment is
crucial to the relevance of digital techniques. Some steps have been done in that direction
in some commercial simulators:

• SOA violations reported alongside digital assertions and counted in coverage;

• analog quantities can be used in expressions within digital assertions;

• libraries of analog probes and sources are available in AMS languages.

With analog extensions of hardware design languages such as Verilog-AMS, it is
also possible to extend the digital practice towards incorporating analog features. For
example [115] and [30] propose analog monitors implemented in this fashion. A major
difficulty with implementing an analog and mixed-signal testbench is that while HDLs
have mixed-signal capabilities, this is not the case of major HVLs such as SystemVerilog.
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A current effort from software providers is the merging of Verilog-AMS with Sys-
temVerilog. This will facilitate the access of analog quantities from within a digital
testbench, and may be a first step towards a general purpose mixed-signal description
and verification language [82].

1.5 Measurements

The role of measurements is to process simulation traces in order to extract relevant
quantities, or measures. Such measures can be obtained by taking a maximum, an av-
erage value, or computing delays and slopes of signals in a variety of ways. Analog
verification heavily relies on measurements; typically the verification is a two-layer pro-
cess that extracts some measures, and checks that they are within the expected range.
Measurements can be written in dedicated languages such as the MEAS library initially im-
plemented by Synopsys [3], and EXTRACT library implemented by Mentor Graphics [10].
These libraries provide statements that can appear in SPICE descriptions, or alongside
the run-management part of a simulation.

In the context of measurements, a signal can be seen either as a discrete-time sequence
of values, or as a continuous-time piecewise-linear / piecewise-constant function of time.
In general, we may define a measurement as a mapping from signals to signals. This
covers the case of continuous-time signals via interpolation, discrete-time signals, and
single values seen as sequences of length one. The time component of a measure is
usually defined as the instant at which the measure was extracted.

Example 1.1. Consider the measurement y = average(period(p)), illustrated in Figure 1.3.
The period is simply defined as the amount of time elapsed between consecutive rising edges
of p. This measure can be taken several times over a signal p featuring more than two rising
edges. The computation of y = average(x) involves representing x as a set of discrete values,
and produces another set of discrete values; typically only the last one would be of interest.
We may also want to check that the period of p does not go above value 2 for too long, for
which we would interpret signal x as continuous and could use interpolation.

Some measurements are restricted to time periods during which the system is in
a certain state. In many situations, entering or leaving a some state can be detected
by simple trigger and target events, such as some signal crossing a given threshold.
Measurements of this kind can be specified by the MEAS library. In other situations,
the measurement can be specified using an absolute time window, for instance when a
particular stimulus is applied, and the behavior is expected to occur within a fixed time
window. Measurements of that kind are easily described using the EXTRACT library.

1.6 Assertions

Digital assertions enable specifying sequential behaviors. They can be written in dedi-
cated languages PSL and SVA, which feature two main layers: (1) regular expressions,
and (2) temporal logic. The regular expression layer is used to describe sequences of
events, in order to detect that the design enters a given state. The temporal logic layer
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Figure 1.3: Extracting measure x = period(p), checking x against threshold 2, and
extracting y = average(period(p)) in turn.

is used to describe invariants using operator always denoted �, and reactive properties
based on such sequences, using suffix implication denoted ◦→. Typical assertions are
of the form �ϕ, with ϕ = ρ1 ◦→ρ2 given ρ1 and ρ2 some regular expressions. Such
an expression reads “ρ1 is always followed by ρ2”, and its meaning is as follows: any
segment of the trace that matches ρ1 is immediately followed by another segment that
matches ρ2.

Digital circuits are synchronized by clocks, and assertions are often evaluated under
the associated sampling. The sampling may be implicit, or may apply to some assertion
ϕ in the from of some event ↑ r, with the assertion written ϕ @↑ r. Properties of inter-
est sometimes involve more than one clock, typically when describing the interaction
between parts of the circuit driven by different clocks. One may specify such proper-
ties using multi-clock assertions, which feature a regular expression or temporal logic
statement split between two sampling clocks. For example, one can specify a sequence
of events (ρ1 @↑ r1) · (ρ2 @↑ r1) that describes a segment of the trace matching ρ1 with
sampling given by ↑ r1 and followed by another segment matching ρ2 with sampling
given by ↑ r2.

Example 1.2. Consider the property ϕ = (p · p · p · p ◦→q ∨ ¬p · ¬p)@↑ r. It uses for
sampling the rising edges of signal r. Based on this sampling it requires that each sequence
of four consecutive occurrences of p should be followed either by an occurrence of q or two
consecutive occurrences of ¬p. The monitoring of this assertion on a given simulation trace
is illustrated in Figure 1.4.

Analog assertions can be formed in one of two ways. The first way to specify analog
behaviors is to use CHECKSOA instructions, dedicated to checking the safe operation
of electrical circuits. Such statements allow to check if some simulated or measured
quantity stays within some range (safe area), and in a more general way, for how long
does it leave the designated range. This is particularly suited for checking correctness
of some analog behavior of the circuit, focusing on the stable values (discarding short
spikes). Safe operating area checks can also include preconditions in the form of arbitrary
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Figure 1.4: Evaluation of concurrent assertion ϕ = (p · p · p · p ◦→q ∨¬p · ¬p)@↑ r on a
given simulation trace.
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Figure 1.5: Checking safe operating area of x using a continuous time representation. A
spike above 2 is safe if it lasts less than 3 time units (t2 − t1 ≤ 3), but is unsafe when it
lasts 3 time units or longer (t4 − t3 > 3).

propositional formulas over propositions of the form x ≤ c or x < c for some measured
quantity x and threshold c. Outside timing relaxation, automated safe operating area
checks do not support the specification of sequential behaviors.

Example 1.3. Consider the property according to which that signal x either stays less than
2, or does not stay above threshold 2 for more than 3 time units; see Figure 1.5 for an
illustration. Signal x can be a primitive quantity simulated in the circuit such as the voltage
at some node, or a measured quantity such as the period of some signal, as in Figure 1.3.

The second way to specify analog behaviors is to use digital assertion languages over
analog quantities. Unlike safe operating area checks, digital assertions can specify se-
quential behaviors. Continuous signals can be incorporated into the regular and temporal
layers of digital assertions via two mechanisms. The first mechanism consists in replacing
digital variables p, q, . . . by threshold propositions over analog variables x > 1, y ≤ 2, . . .
and using a digital sampling clock. One drawback is that glitches occurring between
sampling points are ignored. This phenomenon is exemplified in Figure 1.6. The second
mechanism consists in replacing the digital sampling event ↑ r,↓ s, . . . by some analog
event such as ↑(x > 1),↓(y ≤ 2), . . . and using simple true or false conditions. A diffi-
culty associated with this solution is that the sampling cannot be used to measure the
elapsed time, as with a periodic digital sampling clock. There one may resort to storing
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Figure 1.6: Checking safe operating area of x using a discrete time approximation ϕ =
(¬(p · p · p · p))@↑ r. The specification appears violated at the end of the trace (four
consecutive sampled values of x above 2) whereas it is marginally satisfied (x does not
stay above 2 for more than 2 time units).
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Figure 1.7: Checking safe operating area of x using analog events, local variable based
assertion ϕ′ = ∀τ (τ= t)@↑(x ≥ 2)◦→ (t −τ≤ 3)@↓(x ≥ 2). The last event marking
the exit of x from safe area is not matched by an event marking its return, so that the
violation goes undetected.

the absolute time of events via a local variable, and computing delays by subtracting
such times. The drawback of using this encoding is that the presence of some analog
event cannot be asserted unless one uses the notion of strong and weak expressions as
standardized in [113], which are not implemented in all commercial simulators. The
default semantics is that of weak expressions, according to which the absence of clock
ticks will not cause the assertion to fail as illustrated Figure 1.7. Here the clock tick is
defined as the occurrence of some analog event.



2

Specifying Discrete and Continuous
Properties

This chapter introduces a framework for the specification of mixed-signal behaviors,
obtained by extending standard hardware assertion languages towards continuous be-
haviors. A system design features several variables representing quantities and their
evolution in time. Not all quantities are defined at all times; we consider two models
of time: discrete and continuous. The monitoring process computes additional quanti-
ties of particular interest on a given simulation: propositions, events, properties, and
measures. We give formal definitions for specification languages of temporal logic and
regular expressions. Along with suffix implication they are the backbone of hardware
assertion languages. For digital behaviors, assertions feature a sampling event, based
on some clock signal. We redefine the semantics of sampling operators as changing the
underlying temporal domain. For analog and mixed-signal behaviors, we advocate the
use of real-time constraints, along with continuous checks. We recall previously pro-
posed extensions of temporal logic and regular expressions with such constraints. Our
definitions demonstrate how these extensions naturally integrate in the existing digital
framework, leading to a unified mixed-signal assertion language.

2.1 Introduction

The specification of mixed properties, involving both digital and analog behaviors, is
still an active research topic. Not all mixed-signal circuits exhibit such behaviors. Often,
the behavior of the circuit can be split between analog and digital parts, which do not
interact in a dynamic fashion. Yet the verification of mixed-signal interaction still remains
a bottleneck in the design of integrated circuits. A unified language for specifying analog
and digital behaviors would have the advantage of concepts reuse. In particular it is pos-
sible to use the same operators to specify sequential aspects, those of regular expressions
and temporal logic. However as seen, the nature of the temporal domain in digital and
analog circuits is fundamentally different. In the case of digital behaviors, correct timing
consists in a range of clock cycles. In the case of analog behavior, correct timing consists

16
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in a range of delay values. Sampling with a digital clock of fixed period, the number of
clock cycles also stands for a time delay. Yet the specificity of analog behaviors however
is that events arrive in an asynchronous manner. Thus using a periodic sampling clock
on analog signals results in reduced accuracy. Continuous time specification languages,
as with Metric Temporal Logic (MTL) [73] and Timed Regular Expressions (TRE) [25],
do not suffer from this limitation, as they treat time as a real value. Another important
aspect of analog behaviors is that the state of some analog circuit cannot always be taken
as some signal value. The state of some analog circuit is better represented by some
measure applied to continuous signals produced by the circuit. We can also add time
domain measurements to our framework. Such measurements can easily be integrated
to assertions by considering the values it produces as forming another signal produced
by the simulation.

Using digital assertions languages such as SVA or PSL for specifying analog behaviors
is already possible in some commercial simulators, see [98]. The work [63] studies to
problem of integrating timing constraints in the regular expression layer of SVA. For
this they mainly rely on definitions of timed regular expressions set in [25], which they
adapt to the setting of digital assertions. Various aspects are considered there, and
in particular giving continuous-time interpretations. Our framework retains several
propositions made in [63]. The use of MTL to the specification of continuous signals
was first proposed in [83]. Further applications of this work to analog and mixed-signal
circuits have been proposed by the same authors, and are summarized in [84]. A similar
solution is proposed in [90], where the authors study additional problems such as analog
simulator synchronization and performance aspects. They include a further case study
demonstrating the interest of using MTL as a base for mixed-signal specifications. In
the context of temporal logic based specification of analog behaviors, [88] demonstrates
the benefits of using real-time constraints over fine-grained sampling. This work also
points to the interest of deeper integration of analog assertions with the simulator in
order to adapt the precision of simulation according to the temporal property under
consideration. The limitations of using only timing constraints and threshold predicates
is also emphasized in [112]. Another directions include the use of analog measures
between digital sampling points [77]. We feel that this approach and similar are only
applicable in particular verification scenarios, and thus focus on the core problem of
treating real-time aspects. In most cases quantitative properties of analog signals can be
measured almost independently of other temporal specifications.

2.2 Simulation Traces

A simulation trace can be defined as a set of signals, or equivalently as a valuation
of variable and statement symbols to concrete values that are a function of time. In
particular we consider Boolean and real variables, and statements such as propositions,
events, properties, and measures. We will always assume the (simulated) time to range
over a bounded temporal domain. In the remainder of this section, we fix a temporal
domain T = [0, d]. For a simulation w over T, we denote by w[t, t ′] its restriction to
some interval of time [t, t ′] ⊆ T. We use similar notations for the restriction of some
trace to an open or semi-open time interval.
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Figure 2.1: Graphical representation: (a) discrete-time Boolean signal; (b) continuous-
time Boolean signal; (c) discrete-time real signal; (d) continuous-time real signal.

2.2.1 Signals

We use the term signal to refer to any function from the temporal domain to some value
domain. Quantities appearing in a trace are defined over a specific temporal domain
T . Some quantities are defined over the whole temporal domain T = T, while other
quantities are only defined over a finite set of times T ⊂ T. We talk of discrete-time and
continuous-time signals, respectively. Independently of the nature of its temporal domain
T , a signal also has a type, according to the domain in which it takes its values. We
consider two types of quantities: Boolean values in {0, 1} and real values in R, occurring
respectively in digital and analog circuits. In full rigor digital quantities can take their
value in domains other than {0, 1}, typically the set of values {0, 1,X, Z} where ‘X’ stands
for an undetermined state, and ‘Z’ for a high impedance state. This is not essential to our
results, and we ignore this aspect.1 We obtain four different kind of signals, according to
their temporal domain and value domain as illustrated in Figure 2.1.

Definition 2.1 (Variability). We say that a continuous-time signal is finitely variable when
its number of discontinuities is finite. In that case the variability of this signal is the maximum
number of its discontinuities over an arbitrary unit-length interval.

In the rest of this thesis, we can safely assume that continuous-time Boolean and real
signals, as present in simulation traces, have finite variability.2

2.2.2 Variables

In a specification or system description, quantities are typically defined by using abstract
variables. Assume a given set of Boolean variables P, and a set of real variables X. Let
w be a simulation trace, and let T stand for the temporal domain of w. In the context
of w, a Boolean variable p ∈ P represents the function pw ∈ {0,1}T, and a real variable
x ∈ X represents the function xw ∈ RT. As expected, their value at time t ∈ T is denoted
pw(t) ∈ {0,1} and xw(t) ∈ R, respectively. For Boolean signals we do not make the
distinction between a predicate over T and a function {0, 1}T, thus writing indifferently
t ∈ pw and pw(t) = 1 to denote the fact that p holds at time t over trace w.

1Finite sets of values occuring in digital design can be emulated using powers of the set {0,1}.
2No reasonable simulator can produce signals with infinitely many discontinuities.
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Figure 2.2: Quantization of signal x according to thresholds 0.8 and 1.2.

2.2.3 Propositions

A proposition is some property of the system that can be checked instantaneously. For
some Boolean variable p ∈ P, the fact that p is true constitutes a proposition; we also
talk of Boolean variables as propositional variables. For a value of x ∈ X, a typical
instantaneous property is its position relative to some threshold c ∈ R. We consider
threshold propositions of the form x ./ c where ./ ∈ {<,>,≤,≥} is a comparison operator.
Such propositions have a truth value denoted [x ./ c]w(t) at time t ∈ T according to
trace w. For example it holds [x ≤ 2]w(t) = 1 if and only if xw(t)≤ 2.

The evolution of the truth value x ./ c over time therefore constitutes a Boolean
signal. Going from the real signal denoted x to the Boolean signal denoted x ./ c for
some thresholds c is referred to as Booleanization, or quantization when several thresholds
are involved. Such an operation is a common preprocessing step in the analysis of analog
behaviors typically represented by continuous-time real signals, which makes continuous-
time Boolean signals of particular interest in this context. Figure 2.2 exemplifies the
quantization of some continuous real signal x .

Propositions can be combined using Boolean operators ∨ and ¬. We obtain proposi-
tions in the general form p∨q, and ¬p, standing for the disjunction of proposition p and
proposition q, and the negation of proposition p respectively. The truth value at time t
of these propositions is given by the trace w, according to the following equations:

[p ∨ q]w(t) =max{pw(t), qw(t)} [¬p]w(t) = 1− pw(t)

We consider that such formulas are readily available to higher level specifications, and
sometimes assume their truth value given as part of the simulation trace.

2.2.4 Events

Now take a proposition p defined over a continuous temporal domain T. The change
of value of variable p constitutes an instantaneous property that we call an event. We
denote ↑ p the rising edges of p, occurring when p goes from 0 to 1. In the context of
simulation trace w, event p has the semantics of a Boolean signal [↑ p]w that is true at
points where p has a rising edge and false elsewhere. Formally, at any time t ∈ T we
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Figure 2.3: Some events associated to real variable x and Boolean variable p.

let [↑ p]w(t) = 1 if and only if pw(t−) = 0 and pw(t+) = 1. We denote ↓ p the falling
edges of p and denote l p the edges of p, defined by letting ↓ p = ↑¬p and l p = ↑ p∨↓ p,
respectively.

An event over some Boolean variable corresponds to a discontinuity in some signal,
and by finite variability hypothesis it may only occur at finitely many times. Note that we
can specify events occurring on real variables using a threshold comparison, for example
↑(x ≥ 1). We also assume that an event of the form x ./ c only occurs finitely many
times in a given simulation. In analog simulation, when x represents an analog quantity,
detecting such events may involve the computation of a numerical solution to find the
precise time of crossing, or alternatively the times of occurrence of this event can be
computed using interpolation. Examples of events appear in Figure 2.3.

2.2.5 Properties and Measures

Several quantities can be computed on a simulation trace, and in turn added to the trace
itself. In general we consider two types of quantities: properties and measures. Fix w
a simulation trace. A measure µ associates a real value with w. A property ϕ is either
true or false, and associates a Boolean value with w. It is also interesting to monitor the
evolution of the truth value of ϕ, or the real value of µ across some simulation as follows.

Let ϕ be a property. Associating a truth value [ϕ]w(t) of ϕ with times t ∈ T can be
done by considering whether ϕ holds over the prefix w[0, t]. This definition, which is
that of a past property, enables monitoring the truth value of ϕ with every time instant
based on preceding values of w. The monitoring of ϕ as a past property may be done
online, as the dependency of its value upon those of w respect some form of temporal
causality. Another way to associate a truth value of ϕ with time t is to consider whether
the property holds over the suffix w[t, d] where d = supT. Such a definition would not
enable in general a monitor to decide the value of ϕ in real time, as this truth value may
depend on signal values not yet acquired. We call this of future property.

In the context of trace w, the value of some measurement µ can be associated with
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some time t with some real value following similar principles. We usually denote by
JµKw (t) the value of µ at time t, relative to trace w. This measure can then be used as
additional real variable in assertions or other measurements likewise.

It is also relevant to apply a measure, or check a property for various segments of the
trace w. For convenience we represent an arbitrary segment w[t, t ′] of the trace for t ≤ t ′

as a pair of times (t, t ′) ∈ T2. The action of some proposition p holding continuously
over some segments (t, t ′) is a typical temporal property. Similarly one may compute
the real value of the measure µ for a set of segments (t, t ′) of the input trace. In what
follows we demonstrate how properties and measures can be defined in this fashion.

2.3 Declarative Property Languages

In this section we present the declarative languages that form the basis of assertions,
namely temporal logic and regular expressions. We define their semantics on both
discrete and continuous temporal domains in a uniform fashion. Features specific to
digital assertions, such as sampling clocks, can be integrated to enable the specification of
discrete-time behaviors. In the other direction, real-time constraints can also be integrated,
enabling the specification of continuous-time behaviors. We show that these two types
of features can indeed be handled in the same framework.

2.3.1 Temporal Logic

Temporal logic was initially proposed in Philosophy and studied under the name of tense
logic [102]. It was introduced into the verification of reactive systems in [101] and
used in formal verification ever since. In contrast to classical logic, in temporal logic
atomic propositions are not interpreted as true or false constants, but as predicates over
the temporal domain. Temporal logic formulas enable asserting what is true about the
current state of the system through propositional logic operators, and what is true about
future or past states of the system through additional temporal operators, also called
modalities. In this thesis we conform to the practice in digital assertions and only provide
future modalities; symmetrical past modalities [81] can be considered without additional
difficulty. In dynamic verification, a trace considers only one possible future and is linear,
which is emphasized by considering Linear Temporal Logic (LTL). In formal verification,
other forms of temporal logic can be considered such as Computation Tree Logic (CTL)
[37], interpreted over branching time traces.

Let P be a set of atomic propositions. The syntax of temporal logic is given by the
grammar:

ϕ ::=> | p | ¬ϕ | ϕ ∨ϕ | ϕUϕ

Conjunction and implication can be defined as abbreviations with ϕ ∧ψ= ¬(¬ϕ ∨¬ψ)
and ϕ→ψ= ¬ϕ ∨ψ, respectively. Falsehood is by definition ⊥= ¬>.

Following Section 2.2, we consider that a trace w provides a valuation of atomic
propositions, assigning to each p ∈ P a Boolean signal pw over T. This Boolean signal, or
predicate, is equivalently defined as the subset of times in T where p holds. A trace w
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Figure 2.4: Formula (¬p)U q evaluated at every time point of the trace.

satisfies ϕ at time t, denoted (w, t) |= ϕ, according to the following inductive definitions:

(w, t) |=>
(w, t) |= p iff t ∈ pw

(w, t) |= ¬ϕ iff (w, t) 6|= ϕ
(w, t) |= ϕ1 ∨ϕ2 iff (w, t) |= ϕ1 or (w, t) |= ϕ2

(w, t) |= ϕ1 Uϕ2 iff ∃t ′ ∈ (t,∞)∩T, (w, t ′) |= ϕ2 and ∀t ′′ ∈ (t, t ′)∩T, (w, t ′′) |= ϕ1

We let w |= ϕ, and say that w satisfies ϕ, when (w, 0) |= ϕ.
For discrete temporal domains3 we define the next operator, denoted X, by letting

Xϕ =⊥Uϕ. The semantics of next operator are such that (w, t) |= Xϕ if and only if for
the smallest t ′ > t in T we have (w, t ′) |= ϕ.

Note that we use strict future semantics for operator until, such that the truth value
of an until formula is independent of the value of its arguments at the current time. The
non-strict until operator, denoted Ũ, can be defined as the abbreviation ϕ Ũψ given by
ϕ Ũψ=ψ∨(ϕUψ). This new operator has the same semantics as U, except that it allows
for its right argument to occur at the current time.4 Operators eventually, denoted ◊, and
always, denoted �, are introduced as abbreviations with ◊ϕ => Ũϕ and �ϕ = ¬◊¬ϕ,
respectively. The eventually operator is such that ◊ϕ holds at time t if and only if there
exists t ′ ≥ t such that ϕ holds at time t ′. The always operator is dual, and such that �ϕ
holds at time t if and only if ϕ holds at all times t ′ ≥ t.

An example of temporal logic formula, interpreted over a discrete-time trace appears
in Figure 2.4.

2.3.2 Regular Expressions

Regular expressions were proposed by Kleene for the analysis of sequences of events
[70]. The so-called Kleene algebra can be seen in various mathematical contexts [74],
and regular expressions have many applications, notably text processing [66]. Regular
expressions may describe a phenomenon as a set of possible sequences, built using atomic
expressions corresponding to the occurrence of a single event. Complex phenomena may
then be described as the union, intersection, concatenation, or iteration of simpler ones.

3In a continuous temporal domain, there is no such a time hence in that setting Xϕ⇔⊥ for all ϕ.
4Another more common definition considers a different until operator, strict in neither of its arguments

ϕ and ψ, which meaning is ψ ∨ (ϕ ∧ϕUψ). Out of all variants among the choices of closed, open, or
semi-open intervals in the semantics of until, its strict version is the most general and can express all other
variants. On the contrary, strict until cannot in general be expressed in terms of non-strict until.
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Considering that a sequence of events has a start time t ∈ T, and end time t ′ ∈ T, such
combinatorial operations (denoted ∨, ∧, ·, and ∗ respectively) can be understood as
applied to binary relations over T. We adopt this view in the following.

The syntax of regular expressions is given according the grammar:

ρ ::= a | ε | ρ ∨ρ | ρ ∧ρ | ρ ·ρ | ρ∗

where a is an atomic expression.
We assume that a trace w defines a valuation of atomic expression a as binary relation

over T, equivalently a predicate over T2. This valuation denoted aw has the intuitive
meaning that (t, t ′) ∈ aw when action a occurs between times t and t ′ in the simulation
trace w. Such atomic expressions are constructed from a given set of propositions P. For
a discrete temporal domain T, we define atomic expression ṗ such that (t, t ′) ∈ ṗw if and
only if (t, t ′]∩T= {t ′} and t ′ ∈ pw. Action ṗ occurs over the segment (t, t ′) when t ′ is
the next time instant after t and proposition p holds at time t ′. We omit elsewhere this
decoration, writing p instead of ṗ when clear from the context.5 For continuous temporal
domain T, we will use other types of expressions that will be defined in the following.

The symbol ε stands for the empty word; the atomic expression ε is matched by any
zero-length segment (t, t). Boolean combinations are defined as expected. A concate-
nation requires some segment (t, t ′) to be split into (t, t ′′) matching the first argument
and (t ′′, t ′) matching the second. A Kleene star allows the splitting of some segment in
arbitrarily (but finitely) many segments, all of which match the expression.

Formally, a trace w matches ρ between times t and t ′, which we denote (w, t, t ′) |≡ ρ
according to the following inductive6 definitions:

(w, t, t ′) |≡ ε iff t ′ = t
(w, t, t ′) |≡ a iff (t, t ′) ∈ aw

(w, t, t ′) |≡ ρ1 ∨ρ2 iff (w, t, t ′) |≡ ρ1 or (w, t, t ′) |≡ ρ2

(w, t, t ′) |≡ ρ1 ∧ρ2 iff (w, t, t ′) |≡ ρ1 and (w, t, t ′) |≡ ρ2

(w, t, t ′) |≡ ρ1 ·ρ2 iff ∃t ′′, (w, t, t ′′) |≡ ρ1 and (w, t ′′, t ′) |≡ ρ2

(w, t, t ′) |≡ ρ∗ iff (w, t, t ′) |≡ ε or (w, t, t ′) |≡ ρ ·ρ∗

A segment (t, t ′) such that (w, t, t ′) |≡ ρ is called a match of ρ (relative to w).
We define the satisfaction of some regular expression ρ by trace w by letting w |≡ ρ when
(w, 0, d) |≡ ρ given [0, d] the temporal domain of w.

2.3.3 Temporal-Regular Assertions

Regular expressions can also be used to specify relations between patterns in the trace by
using them as propositions within temporal formulas. To this end we introduce the suffix

5Note however that propositional operators apply to variable symbols and not atomic expressions.
In particular atomic expression ¬p denotes a signal segment with a single event where p does not hold.
Signal segments with more than one event are matched neither by p nor by ¬p.

6Strictly speaking, because of ∗ we should say that relation |≡ is the smallest satisfying the following
equivalences; in that case the only if direction becomes redundant. Otherwise the semantics of expressions
such as ε∗ is not correctly defined. One could have (w, t, t ′) |≡ ε∗ iff t ≤ t ′, or (w, t, t ′) |≡ ε∗ iff t = t ′, since
both satisfy the condition (w, t, t ′) |≡ ε∗ iff t = t ′ or (w, t, t ′) |≡ ε∗.
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implication operator, denoted ◦→. Suffix implication derives from the less commonly
used suffix conjunction operator, itself denoted ◦. Such operators associate a regular
expression ρ and a temporal formula ϕ into compound temporal formulas ρ ◦→ϕ, and
ρ ◦ϕ, respectively. The formula ρ ◦→ϕ is satisfied when for all prefixes matching ρ the
associated suffix satisfies ϕ. The formula ρ ◦ϕ is satisfied when there exists one prefix
matching ρ and associated suffix satisfying ϕ.

The syntax of temporal logic can this way be enriched with a clause ϕ ::= ρ ◦ϕ,
where ρ is a regular expression. Given an expression ρ and formula ϕ, the semantics of
suffix conjunction is as follows:

(w, t) |= ρ ◦ϕ iff ∃t ′, (w, t, t ′) |≡ ρ and (w, t ′) |= ϕ

The suffix implication operator is defined as the abbreviation ρ ◦→ϕ = ¬(ρ ◦¬ϕ). Its
semantics can be derived as follows:

(w, t) |= ρ ◦→ϕ iff ∀t ′, (w, t, t ′) |≡ ρ and (w, t ′) |= ϕ

When a regular expression ρ is used directly as a formula, it implicitly stands for the
formula ρ ◦>. An expression ρ is satisfied at time t if and only if there exists t ′ ∈ T
such that the segment (t, t ′)matches ρ. This way the assertion ϕ = �ρ1 ◦→ρ2 featuring
regular expressions ρ1 and ρ2 stands for �ρ1 ◦→(ρ2 ◦>). Assertion ϕ is satisfied if and
only if for all segment (t, t ′) matching ρ1 there exists a segment (t ′, t ′′) matching ρ2.

2.3.4 Sampled Properties

Hardware (digital) assertions are define over a discrete temporal domain, based on
a sampling clock. This sampling clock is given in the form of an event, for example
↑ r. Following the practice in hardware assertion languages, we introduce an explicit
sampling operator @. Integrating this operator in temporal logic has been the object of
the study [49].

Let p and r be atomic propositions. Assume given a trace w, and let T = [↑ r]w be
the set of times at which r has a rising edge. The statement p@↑ r denotes the signal
[p@↑ r]w such that [p@↑ r]w(t) = [p]w(t) for all t ∈ T , and undefined for t ∈ T \ T .
This definition departs from simulation semantics, according to which operator @ simply
means “at the next event”. In the context of mixed-signal assertions, we must make the
difference between discrete-time signals and their piecewise constant interpolation.

A sampling clock can also be attached to some expression or formula ϕ by using the
syntax ϕ @↑ r. The semantics of @↑ r seen as a postfix operator can be thought of as
setting the temporal domain of the property to the set of times where ↑ r occurs. Some
properties involve more than one sampling clock; this occurs for instance when properties
range over signals driven by different clocks.

Sampled expressions and formulas are defined by adding to regular expressions
the clause ρ ::= ρ @↑ r and to temporal logic the clause ϕ ::= ϕ @↑ r. The match
and satisfaction relations are now made dependent on the sampling T ⊆ T; these are
written |≡T and |=T . Inductive definitions of |≡T and |=T are identical to those of |≡ and
|=, respectively. The effect of the sampling in regular expression is limited to atomic
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expressions:

(w, t, t ′) |≡T ṗ iff (t, t ′]∩ T = t ′ and t ′ ∈ pw

For temporal formulas the sampling influences semantics of the until operator:

(w, t) |=T ϕUψ iff ∃t ′ ∈ (t,∞)∩ T, (w, t ′) |=ψ and ∀t ′′ ∈ (t, t ′)∩ T, (w, t ′′) |= ϕ

The inductive definition of other temporal and regular operators’ semantics is unaffected.
The role of operator @↑ r, in both expressions and formulas, is simply to change the
sampling; its semantics are given by

(w, t, t ′) |≡T ρ @↑ r iff (w, t, t ′) |≡S ρ

(w, t) |=T ϕ @↑ r iff (w, t, t ′) |=S ϕ

where S = [↑ r]w.
Let us now assume a periodic sampling T . Timing constraints can be expressed by

counting the number of repetitions of atomic expressions, or by nesting the next operator
for temporal formulas. Counting operators, denoted using exponentiation are introduced
as abbreviations with ρ0 = ε, ρi = ρi−1 · ρ, ρi,i = ρi, and ρi, j = ρi, j−1 · (ε ∨ ρ) for all
integers 0 ≤ i < j. For temporal logic, consider the nesting of next operators with
abbreviations X0ϕ = ϕ, Xiϕ = X Xi−1ϕ, Xi,iϕ = Xiϕ, and Xi, jϕ = Xi, j−1(ϕ ∨ Xϕ) for all
integers 0 ≤ i < j. A constrained discrete delay can be specified in temporal logic as
Xm,nϕ, which means ϕ will hold sometime in the next m to n clock cycles. It may be
specified in a regular expression with ρ1 · >̇m,n ·ρ2, which describes a segment starting
with ρ1, followed by a delay of m to n clock cycles, and finishing with ρ2.

2.3.5 Timed Properties

To specify continuous delays, that is, bounds on real-time duration of behaviors, we
consider so-called timed properties. Such specifications extend finite-state properties
with timing constraints. They were studied extensively, primarily based on the timed
automaton model [17]; we also refer the reader to [21] for an early survey of specifica-
tion techniques applicable to real-time systems. In such properties, the constraints are
specified as an interval of delays that are deemed acceptable between two events, or
two points in time. Both temporal logic and regular expressions can be endowed with
additional operators to specify these constraints, leading to specification languages of
Metric Temporal Logic (MTL) [73], and Timed Regular Expressions (TRE) [25] respec-
tively. The temporal domain of traces can be either discrete or continuous, as long as
real-time information is present. In this thesis we favor continuous temporal domains
as a more general case: in temporal logic discrete-time properties can be encoded in
continuous-time [21]. Also, while it may be possible to approximate timed specifications
using periodic-time counters, it is usually not simple as we have seen in Section 1.6. We
propose to overcome such limitations or inconvenience by using timed properties as a
basis for the analysis of mixed-signal assertions.
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Metric Temporal Logic Timing constraints can introduced into temporal logic by con-
sidering a family of timed until operators, instead of the usual until, which we now call
untimed until. Timed until operators are denoted UI with some interval I as subscript. The
resulting logic, introduced by Koymans in [73] is called Metric Temporal Logic (MTL).
The syntax of MTL is the same as that of temporal logic, with the additional clause
ϕ ::= ϕUI ϕ, where I is an interval of R≥0. Let us write ⊕ and 	 for the Minkowski sum
and difference operations, defined between arbitrary sets R, S ⊆ R as follows:

R⊕ S = {r + s : r ∈ R, s ∈ S} R	 S = {r − s : r ∈ R, s ∈ S}

In the case where R is a singleton we abuse the notation and write r ⊕ S and r 	 S in
place of {r} ⊕ S and {r} 	 S respectively. The satisfaction relation |= for MTL is as given
in Section 2.3.1, with an additional inductive case for timed until given as follows:

(w, t) |= ϕ1 UI ϕ2 iff ∃t ′ ∈ (t ⊕ I)∩T, (w, t ′) |= ϕ2 and

∀t ′′ ∈ (t, t ′)∩T, (w, t ′′) |= ϕ1

Operator until is viewed a special case of timed until, with ϕUψ = ϕU(0,∞)ψ. Metric
Temporal Logic can be defined on a discrete temporal domain (T is finite) or on a dense
temporal domain (T an interval of R≥0).

Timed Regular Expressions Timing constraints can be introduced in regular expres-
sions by considering a family of new operators that restrict the duration of some expres-
sion to some fixed interval. Such duration constraint are denoted 〈 〉I . Given a timing
interval I , this unary operator requires that the expression, which it applies to has a
duration within I . The resulting specification language, introduced by Asarin, Caspi and
Maler in [24], is called Timed Regular Expressions (TRE). The syntax of TRE is the same
as the syntax of regular expressions, with the additional clause ρ ::= 〈ρ〉I , where I is an
interval of R≥0. The semantics of duration constraints are given by

(w, t, t ′) |≡ 〈ρ〉I iff t ′ − t ∈ I and (w, t, t ′) |≡ ρ

Timed regular expressions can be defined on a discrete or continuous temporal domain T,
similarly as with MTL. For a discrete temporal domain, one considers atomic expressions
ṗ described in Section 2.3.2. For a continuous temporal domain, we define atomic
expressions p such that (t, t ′) ∈ p

w
if and only if t ′′ ∈ pw for all t ′′ ∈ (t, t ′). Action p

occurs over the segment (t, t ′) when proposition p holds continuously over the open
interval of time (t, t ′).

The specification languages of MTL and TRE, when defined over Boolean variables and
threshold propositions form practical languages for the specification of continuous and
mixed-signal behaviors. Using the conventions set out in this section, we can see that they
can naturally integrate to hardware assertions as they exists in practice. For the purpose
of allowing specifications mixing continuous-time parts along with discrete-time, we can
simply further allow the constant true as a sampling clock. The semantics of @> have the
effect of reseting the sampling to the entire temporal domain T, enforcing a continuous-
time interpretation of the subformulas or subexpressions it applies to. Whether a full
integration of timed specifications with sampled ones is desirable should be the subject of
further practical investigations. We did not encounter properties of mixed-signal circuits
that required the full expressiveness of such an integrated language.



3

Temporal Logic Monitoring

In this chapter we present a procedure to monitor Metric Temporal Logic over continuous-
time traces. This form of temporal logic adds timing constraints to the until operator. It
has been successfully applied to the specification of analog and mixed-signal behaviors,
in particular those featuring both sequential and timing aspects. As the Boolean signals
that we consider typically come from quantization of analog quantities, we assume a
continuous temporal domain. A temporal logic formula can be given a truth value at
any point in the temporal domain; the resulting Boolean signal is known as a satisfaction
signal. Knowing the truth value of direct subformulas for every time point is sufficient
to deduce the truth value of the formula also at every time point. This is the basis of
the approach due to [83] that we present in this chapter. Analyzing the complexity
of resulting algorithms, we are able to show that MTL monitoring has a computation
time cost linear in the size of the input trace, and at most quadratic in that of the input
formula.

3.1 Introduction

Metric Temporal Logic [73], as introduced in Section 2.3.5 is a convenient language for
the specification or real-time behaviors of discrete and continuous systems. Consider
the simple safe operating area property of Example 1.3 in Section 1.6. It requires that
signal x does not stay above threshold 2 for a period lasting more than 3 time units. This
property can be specified as the following MTL formula: �◊[0,3] x ≤ 2. It reads as follows:
“always eventually x ≤ 2 within [0,3]”. Generally in MTL, sequential and duration
constraints can be considered together. Take for example the formula p UI(q UJ(r UK >)),
with proposition p, q, r and intervals I , J , K , that reads “p until q within I , until r within
J , until true within K”. This formula requires that p holds with duration in I , followed
by q holding with duration in K , followed by r holding with duration in K . Propositional
logic operators can also be used freely within a formula.

MTL has been applied to the specification of analog and mixed-signal behaviors with
success in two empirical evaluations, reported in [85]. It can be readily incorporated into
digital assertion framework by introducing the timed operators of MTL, while keeping
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the discrete-time representation of digital assertions, as presented in Chapter 2. Further
integration of MTL with sampled properties can be achieved by using a continuous-time
domain representation. Analogously to operator @↑ p setting the sampling according to
rising edges of p, we proposed to use the form @> in order to set the sampling to the
entire, continuous temporal domain. This, along with the timed until operator would
suffice for making MTL available in existing digital assertion languages.

The monitoring problem consists in deciding if a simulation trace satisfies a given
specification. Monitoring temporal logic on discrete behaviors is a well-studied topic,
with many applications in run-time verification of software systems [80]. In this chapter
we consider the monitoring of Metric Temporal Logic. This problem has been studied in
[108] for discrete-time traces, and [83] for continuous-time traces. The generalization
of [87], with applications to model checking, consists in deciding whether an ultimately-
periodic trace satisfies an MTL formula. In what follows we expose the offline monitoring
algorithms of [83], which proceeds by evaluating the satisfaction of all subformulas over
the entire temporal domain. This is done via a double induction, on the structure of the
formula, and over time. For each subformula we show that the temporal domain can be
decomposed into intervals in which the satisfaction status of formulas is constant. The
relation between intervals of satisfaction of a formula and those of its subformulas can be
expressed using usual operations such as union, complement, and Minkowski sum. We
obtain a simple and efficient algorithm for monitoring MTL formulas. Online monitoring
of MTL can also be achieved at the cost of small modifications to the algorithms presented
here, as exposed in [86].

3.2 Metric Temporal Logic

Let us specialize the definitions of Chapter 2 as follows. We fix a set of Boolean variables
(or propositions) P, and a temporal domain T = [0, d] for some d > 0. A trace w is a
valuation of propositions in P. This valuation maps each proposition p ∈ P to a predicate
pw ∈ 2T. Minkowski sum and difference operations are restricted to the temporal domain:
for any T ⊆ T and interval I ⊆ R≥0, we let T ⊕ I = {t + c ∈ T : t ∈ T, c ∈ I}, and
T 	 I = {t − c ∈ T : t ∈ T, c ∈ I}.

3.2.1 Syntax and Semantics

We recall from Section 2.3.5 the definition of Metric Temporal Logic. The syntax of MTL
formulas is given according to the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ϕ | ϕUI ϕ

where p ∈ P and I is an interval of R≥0. Eventually and always operators can also
be timed by some interval I , and denoted ◊I and �I respectively. They are given as
the following abbreviations: ◊I ϕ = >UI ϕ and �I ϕ = ¬◊I ¬ϕ. We use the following
priorities between MTL operators, in increasing order: ¬, temporal operators, ∧, and ∨.
Operator until gives priority to the left: the formula ϕUIψUJ γ stands for ϕUI(ψUJ γ).
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The semantics of MTL formulas relative to trace w are given by induction as follows:

(w, t) |= p iff t ∈ pw

(w, t) |= ¬ϕ iff (w, t) 6|= ϕ
(w, t) |= ϕ1 ∨ϕ2 iff (w, t) |= ϕ1 or (w, t) |= ϕ2

(w, t) |= ϕ1 UI ϕ2 iff ∃t ′ ∈ t ⊕ I , (w, t ′) |= ϕ2 and ∀t ′′ ∈ (t, t ′), (w, t ′′) |= ϕ1

We let w |= ϕ when (w, 0) |= ϕ. The notation ϕ⇔ ψ signifies that formulas ϕ and ψ
agree on all traces: for all traces w, it holds that (w, t) |= ϕ if and only if (w, t) |=ψ.

The semantics of derived operators ◊I and �I can be made explicit as follows. For
timed eventually, it holds (w, t) |= ◊I ϕ if and only if ∃t ′ ∈ t ⊕ I , (w, t ′) |= ϕ. For timed
always, it holds (w, t) |= �I ϕ if and only if ∀t ′ ∈ t ⊕ I , (w, t ′) |= ϕ.

Timing interval I may be omitted in eventually and always operators when equal to
[0,∞). It may also be omitted in the until operator, however when equal to (0,∞).
Formally, we define operator untimed until U as the abbreviation ϕUψ = ϕU(0,∞)ψ.
The non-strict until operator, denoted Ũ, is such that ϕ Ũψ⇔ ϕU[0,∞)ψ, and can be
defined by letting ϕ Ũψ=ψ∨ (ψUϕ). In such cases we fall back to the definitions of
Section 2.3.1.

3.2.2 Until Rewrite

A noteworthy property of MTL that we call the until rewrite, is that timing aspects can
be separated from sequential aspects. This observation has been used in many places
[19, 47, 65], and appears in full details in [95]. The until rewrite rules state that timed
until can be rewritten only using temporal operators timed eventually and untimed until.
These rules greatly simplify the analysis in a number of situations.

Proposition 3.1 (Until Rewrite). For any formulas ϕ, ψ and constants 0 ≤ a ≤ b the
following equivalences hold:

ϕU[a,b]ψ⇔ ◊[a,b]ψ∧ϕU[a,∞)ψ ϕU[a,∞)ψ⇔ �[0,a](ϕ Ũψ)

Such properties extend to the case of open and semi-open intervals. For any interval
I of R≥0 it holds ϕUIψ⇔ ◊Iψ∧ϕUI∪[sup I ,∞)ψ. For any real-value a ≥ 0 it also holds
ϕU(a,∞)ψ⇔ �[0,a](ϕUψ). Thus any MTL formula can be rewritten using temporal
operators of the form ◊I and U only.

3.2.3 Satisfaction Signals

The satisfaction signal [ϕ]w of formula ϕ relative to w is characterized by [ϕ]w(t) = 1 if
(w, t) |= ϕ, 0 otherwise, for all t ∈ T. The offline monitoring algorithm that we present is
recursive on the formula structure. As MTL semantics are inductive, knowing the satisfac-
tion signals of direct subformulas shall be sufficient to compute the satisfaction signal of
any formula. Each operator among ∨, ¬, U, and ◊I is now seen as processing satisfaction
signals. The crucial property of each operator is that it preserves finite variability: if
the satisfaction signal of subformulas has finitely many discontinuities, so will have the
satisfaction signal of the main formula. The computation of satisfaction signals is trivial
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for atomic propositions. For a Boolean operation, the resulting satisfaction signal has
a number of discontinuities at most the sum of that of its arguments. A formula of the
form ◊[a,b]ϕ has a satisfaction signal with at most the same number of discontinuities as
that of ϕ. Discontinuities can only appear at t − b for each rising edge of ϕ at t, and at
t − a for each falling edge of ϕ at t. Let us now give a more detailed intuition as to why
the satisfaction signal of an until formula also has finite variability, and how to compute
it.

Firstly, for any open interval (t, t ′) of trace w such that the satisfaction signal of ϕ
and ψ is constant, then the satisfaction signal of ϕUψ relative to w does not change
either. Furthermore assuming ϕ and ψ constant over (t, t ′), irrespectively of the value
of ϕ and ψ at time t, its satisfaction status is the same at t.

Proposition 3.2 (Right-Continuity).

[ϕUψ]w(t) = [ϕUψ]w(t
+)

The value of ϕUψ in the preceding instant can be determined as follows.

Proposition 3.3 (Induction).

[ϕUψ]w(t
−) =











1 if [ϕ]w(t
−) = 1 and [ψ]w(t

−) = 1
1 if [ϕ]w(t

−) = 1 and [ψ]w(t) = 1
0 if [ϕ]w(t

−) = 0
[ϕUψ]w(t) otherwise

To compute the satisfaction signal we may split the temporal domain T= [0, d] into
[t1, t1], (t1, t2), [t2, t2], (t2, t3), . . . [tn, tn] with t1 = 0, tn = d, such that [ϕ]w and [ψ]w
are constant over each segment (t i, t i+1). We represent signal f = [ϕ]w by its successive
values f (0) and f (t−i ), f (t i) for i = 2..n, similarly for g = [ψ]w. Following the semantics
of operator untimed until, the signal h= [ϕUψ]w is also constant over each such interval
and representable by its values h(0) and h(t−i ), h(t i) for i = 2..n. As the satisfaction
signal of an until formula is right-continuous, for all i = 2..n it holds h(t i−1) = h(t−i ).
Also at the last instant the until formula cannot hold due to the operator’s strict future
semantics, so that h(tn) = 0. The computation may then proceed by backward induction,
thanks to the Proposition 3.3, obtaining h(t−i ) from f (t−i ), g(t−i ), f (t i), g(t i), and h(t i).

3.3 Interval Marking

The original presentation of MTL monitoring algorithms emphasized the notion of satis-
faction signal [83], as previously described. Instead of reasoning on satisfaction signals,
we found it more convenient to reason purely in terms of satisfaction sets. Identifying
predicates with Boolean signals, we now view [ϕ]w as a set of times in T at which the
formula is satisfied.

Definition 3.4 (Satisfaction Set). The satisfaction set of formula ϕ relative to trace w,
denoted [ϕ]w, is defined as follows:

[ϕ]w = {t ∈ T : (w, t) |= ϕ}
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In that setting we establish that finite variability input signals induce satisfaction sets
with finitely many intervals.

Theorem 3.5 (Satisfaction Set Decomposition). Given a finite variability trace w and an
MTL formula ϕ, the set [ϕ]w is a finite union of intervals.

We use the until rewrite rule, and consider without loss of generality that formulas
are constructed using operators ∨, ¬, ◊I , and U. The proof then proceeds by induction
on the formula structure.

For atomic propositions, this follows directly from the finite variability hypothesis.
We have [p]w = pw which admits a decomposition in finitely many intervals.

For disjunction, the satisfaction set of formula ϕ ∨ψ is obtained from those of ϕ and
ψ as follows:

[ϕ ∨ψ]w = [ϕ]w ∪ [ψ]w
For the negation operator, we have:

[¬ϕ]w = T \ [ϕ]w

For the timed eventually operator, it stems from definitions that:

[◊I ϕ]w = [ϕ]w 	 I

As the Minkowski difference of two intervals T 	 I is an interval, and the Minkowski
difference distributes over the union, it follows by induction that [◊I ϕ]w is itself a union
of intervals.

For the untimed until ϕUψ, consider the induction hypothesis according to which
[ϕ]w and [ψ]w are finite unions of intervals of T. We further assume that [ϕ]w and
[ψ]w are given in the form of their minimal representations, as finite unions of separated
intervals of T. Each pairs of intervals of [ϕ]w and [ψ]w can be treated independently, ac-
cording to the following facts. We begin by noticing that operator until is right-distributive
relative to disjunction:

ϕU(ψ1 ∨ψ2)⇔ (ϕUψ1)∨ (ϕUψ2)

This is straightforward from semantic definitions. We may thus assume without loss of
generality, that [ψ]w is made of a single interval J . Otherwise we treat several intervals
in isolation using left-distributivity. Now take T1, T2 two separated subsets of T such that
[ϕ]w = T1 ∪ T2. According to the semantics of until it holds t ∈ [ϕUψ]w if and only if
∃t ′ ∈ [ψ]w, such that t ′ > t and ∀t ′′ ∈ (t, t ′) either t ′′ ∈ J1 or t ′′ ∈ J2. We notice that as
J1 and J2 are separated, for any t ′ we cannot have both (t, t ′) ⊆ J1 and (t, t ′) ⊆ J2. We
may thus assume that [ϕ]w is a single interval I , and otherwise treat several intervals
separately taking the union of the result. For [ϕ]w = I and [ϕ]w = J given I , J intervals
of T, the satisfaction set [ϕUψ]w is an interval K of T such that

K =
§

[inf I , sup I)∩ [0, sup J) if [0, sup I]∩ J 6= ;
; otherwise

We have shown that assuming [ϕ]w and [ψ]w are finite unions of intervals, [ϕUψ]w is
also a finite union of intervals. This concludes the last inductive case in the proof of
Theorem 3.5.
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3.4 Algorithms

The proof of Theorem 3.5 already gives us a sketch of algorithm for the monitoring of
MTL. The first step of the procedure, which is implicit in the following, is to rewrite
subformulas using operator UI into formulas using ◊I and U following Proposition 3.1.
The monitoring algorithm proceeds recursively on the formula structure, computing
satisfaction signals of all its subformulas. It uses a sub-routine COMBINE to compute
the satisfaction signal of a formula based on that of its direct subformulas, applying
specific treatments for each MTL operator • among ¬, ∨, ◊I , and U. The skeleton of the
procedure is given in Algorithm 3.1. We use a representation of a satisfaction set [ϕ]w
as a set of intervals Iϕ.

In order to implement basic operations efficiently it is beneficial to ensure a minimal
representation where no intervals overlap or are adjacent. This also allows to consider
sets of intervals as implicitly ordered according to their left- or right- end points indiffer-
ently. When adding an interval to a set, and in general merging two sets of intervals we
shall always fuse pairs of overlapping or adjacent intervals. Let J and K be two sets
of intervals. We denote J äK their merging, defined as the smallest set of intervals
such that ∪(J äK ) = ∪(J ∪K ). This enables an optimal representation of any given
satisfaction set, in general of any set definable as finite union of intervals.

Algorithm 3.1 INTERVALS(ϕ, w)
select ϕ
case p:
Iϕ := ATOM(ϕ, w)

case • ψ:
Iψ := INTERVALS(ψ, w)
Iϕ := COMBINE(•,Iψ)

case ψ1 •ψ2:
Iψ1

:= INTERVALS(ψ1, w)
Iψ2

:= INTERVALS(ψ2, w)
Iϕ := COMBINE(•,Iψ1

,Iψ2
)

end select
return Iϕ

Boolean Operations For disjunction, the implementation of subroutine COMBINE is
straightforward. We simply merge the ordered lists of intervals Iϕ and Iψ into a new
ordered list Iϕ∨ψ = IϕäIψ. Note that this can be achieved in time linear in |Iϕ|+|Iψ| ≥
|Iϕ∨ψ|. The pseudo-code appears in Algorithm 3.2, and preserves the ordering with
|Iϕ|+ |Iψ| comparisons by ensuring intervals are inserted in Iϕ∨ψ in the same order.

For negation, we need to cover the complement of Iϕ. Assuming Iϕ = {I1, I2, . . . , In}
is a minimal, ordered list of intervals representing [ϕ]w, we obtain an ordered list of
intervals representing T\[ϕ]w by considering adjacent time values among 0, inf I1, sup I1,
inf I2, sup I2, . . ., inf In, sup In, d. We represent [¬ϕ]w using at most n+ 1 intervals, and
the time-complexity is also linear in |I¬ϕ| ≤ |Iϕ|+ 1.
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Algorithm 3.2 COMBINE(∨,J ,K )
Require: J ,K sorted
Ensure: L minimal, sorted

while J ,K 6= ; do
J := first(J )
K := first(K )
if J before K then
L :=L ä {K}
K :=K \ K

else
L :=L ä {J}
J := J \ J

end if
end while
return L

Timed Eventually The case of timed eventually does not pose any difficulty. Given a
minimal, ordered list Iϕ = {J1, J2, . . . , Jn} of intervals we get a list of intervals I◊I ϕ

=
{J1	I , J2	I , . . . , Jn	I}. It is ordered according to both left and right end points. Note that
the Minkowski difference between two separated intervals Ji, Ji+1, and some interval I
can create adjacent or overlapping intervals I	Ji and I	Ji+1. In that case we may merge
the resulting intervals. The pseudo-code for treating operator timed eventually appears
in Algorithm 3.3. We have |I◊I ϕ

| ≤ |Iϕ|, and the time-complexity of this algorithm is
linear in |Iϕ|.

Algorithm 3.3 COMBINE(◊I ,J )
Require: J sorted
Ensure: K minimal, sorted

while J 6= ; do
J := first(J ); J := J \ J
K :=K ä {J 	 I}

end while
return K

Untimed Until For the until operator we proceed as follows. The COMBINE algorithm
is called with two lists of intervals J and K as arguments, representing the satisfaction
sets of two subformulas ϕ and ψ, respectively. We aim to produce a list of intervals L
that represents the satisfaction set of ϕUψ. We make the additional hypotheses that
J and K are minimal, i.e. all their intervals are separated, and ordered in decreasing
time order. In such conditions we can directly apply the argument used in Section 3.3 to
process intervals pairwise. The procedure to compute the decomposition of some untimed
until satisfaction signal appears in Algorithm 3.4. This procedure has time-complexity
linear in |J |+ |K | ≥ |L |.
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Algorithm 3.4 COMBINE(U,J ,K )
Require: J ,K minimal, sorted decreasing
Ensure: L minimal, sorted decreasing

while J 6= ; and K 6= ; do
J := first(J )
K := first(K )
L := [inf J , sup J)∩ [0, sup K)
if L = ; then
J := J \ J

else if [0, sup J]∩ K = ; then
K :=K \ K

else
L :=L ä L
J := J \ J

end if
end while

We define the size of some formula ϕ, denoted |ϕ|, as the size of its syntactic tree.
The size of some trace |w| is defined as the total number discontinuities in its Boolean
signals. From all intermediate results in this section, we obtain that the monitoring of
MTL can be done with a time complexity quadratic in the size of the formula (number
of its subformulas) and linear in the size of the trace (number of its discontinuities).
The quadratic dependency on the formula size is due to the fact that size of satisfaction
signals may grow linearly with the size of the formula.

Theorem 3.6. For any formula ϕ and trace w, the signal [ϕ]w has a size at most |ϕ| · |w|.

Proof. Let w be a trace; we prove the result by induction on ϕ. The property is trivial
for atomic formulas. For negation, we have |[¬ϕ]w| ≤ |[ϕ]w| + 1 ≤ |ϕ| · |w| + 1 ≤
(|ϕ|+ 1) · |w| = |¬ϕ| · |w|, and for disjunction we have |[ϕ ∨ψ]w| ≤ |[ϕ]w|+ |[ψ]w| ≤
|ϕ| · |w|+ |ψ| · |w|= (|ϕ|+ |ψ|) · |w|= |ϕ∨ψ| · |w|. The case of until operator is similar.

Corollary 3.7. The algorithm INTERVALS(ϕ, w) has time-complexity in O(|ϕ|2 · |w|).

Proof. The computation of the satisfaction signal of a formula ψ from its direct subfor-
mulas takes time in c · |ψ| · |w| for some constant c. For any subformula ψ of ϕ this is less
than c · |ϕ| · |w|; there are at most |ϕ| subformulas to consider, so that the computation
of all satisfaction signals takes time less than c · |ϕ|2 · |w|.
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Diagnostics

In this chapter we consider the problem of explaining, given a simulation trace and a
failing MTL formula, why the trace violates the formula. We propose the definition of
temporal implicants, which represent subsets of simulation traces that are sufficient to
account for the violation of a formula ϕ, or dually the satisfaction of ¬ϕ. The diagnostic
problem is defined as finding temporal implicants of a formula satisfied by a given trace.
In order to solve this novel problem, we had to overcome mathematical issues that come
from the density of the temporal domain. Our main result is an inductive diagnostic
generation scheme for MTL which produces focused sub-traces sufficient to explain a
given violation. A crucial ingredient of the procedure is the elimination of disjunctive
operations by the introduction of selection functions similar in spirit to Skolem functions
used to eliminate existential quantification. Applying this technique to analyze the
result of simulation traces makes MTL readily available to the non-specialist, by making
semantics of the specification explicit on a given trace. The debugging effort is reduced
in general, and the fault is easier to locate whether it lies in the specification or in the
simulated model.

4.1 Introduction

4.1.1 Motivation

Despite the expressive advantages of MTL and its efficient monitoring procedure de-
scribed in Chapter 3, there are still many obstacles to its further adoption by electronic
design practitioners and others. One particular obstacle is the use of a continuous-time
representation of signals. It can be counter-intuitive to reason about the truth of some
proposition or formula in between sampling points associated with a given simulation.
Another obstacle is inherent in the way temporal logic describes sequential behavior
through the until operator. This operator does not share the intuitive properties of con-
catenation, in particular until is not associative: (p U q)U r is not equivalent to p U(q U r).

Regardless of the specification language that one choses to use, the output of monitor-
ing can be a long trace (the temporal domain features many events) with a large number
of variables (the value domain has a high dimension). Analyzing the causes of some
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assertion violation is not intuitive. There is a need to make the result of temporal logic,
and assertion checking in general, more comprehensible to users of simulation-based ver-
ification techniques. This problem is particularly acute in the setting of continuous-time
properties, in which some timing violation may not stem from an observable event in the
trace, but may also stem from the absence of some event in the trace under consideration.

4.1.2 Our Approach

Consider the temporal logic formula �(p→ ◊[1,2] q). It requires that for any time where
p holds there exists a future time, within 1 to 2 from the present, where q holds. The
behavior depicted in Figure 4.1 violates this temporal property. The violation can be
explained by the fact that p holds at time t, and q does not hold throughout [t+1, t+2].
Such a concise piece of information will increase our confidence in monitoring procedures,
and promote their further acceptance.

p

q

0 1 t t + 1 t + 2

Figure 4.1: A behavior that violates �(p → ◊[1,2] q). Shaded area gives one possible
explanation.

Finding an explanatory sub-model in the propositional case, is strongly related to
the concept of implicants of a formula. In the setting of temporal logic, we define the
notion of temporal implicant, as a set of signal segments that account for the violation.
This set of segments is not unique, and our aim is to provide a minimal set of segments,
such that strict subsets of these segments are not sufficient to explain the violation. We
will see that this minimality condition is too strong, making the computation of such
prime implicants not practical. Instead we proceed inductively on the formula structure,
and we find implicants that are only locally minimal: they are prime if subformulas are
atomic.

The benefits of this approach are not only in terms of computation cost. Proceeding
inductively on the formula structure also enables us to produce a hierarchical diagnostic,
in which the truth or falsehood of some formula can be traced back to atomic formulas
via all its intermediate subformulas. In the presence of multiple causes of a fault, at each
stage of the process the user can be given the responsibility to choose one alternative.
This results in a fully interactive diagnostic procedure. Alternatively the choice can be
automated, with the aim of reaching a concise diagnostic. We believe our notion of
diagnostic is well suited for the analysis of monitoring results, and will improve the
usability of temporal logic in general.
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4.1.3 Related Work

The problem of understanding a counter-example by finding the reason for the failure
of a temporal logic formula in the trace itself was studied in [28]. This work differs
from ours in several aspects. It adopts a different notion of failures based on Halpern
and Pearl causality [62] and considers only Linear Temporal Logic (LTL) and discrete
temporal domains. The authors are interested in the detection of the earliest failure in a
trace. In our work we provide more flexibility by means of selection functions, enabling
to choose between several possible failures.

A procedure computing a minimal debugging window for traces that violate an MTL
formula was proposed in [89]. While this work is similar to ours in spirit, the resulting
analysis is coarser – it allows the analysis to focus on a smaller temporal interval where
the cause of violation can be found, but does not exhibit the parts of the input signals
that explain the violation. The minimal debugging window is a single time interval of the
whole trace, while our diagnostic is made of several time intervals, applying to individual
signals in the trace.

4.2 Propositional Foundations

Consider the problem of explaining why a formula ϕ is violated by a given execution w
of some system, seen as finding the part of the execution w that causes ϕ to be violated.
Note that through negation this is equivalent1 to solving the dual problem of explaining
why some formula is satisfied. We first introduce and study the problem in the simple
setting of propositional logic, where models are valuations, and put classical notions in
the diagnostics perspective.

4.2.1 Problem Statement

Let P be a finite set of atomic propositions. A valuation v is a mapping from P to {0,1},
which we write v ∈ 2P. We define propositional formulas over P using constant > and
operators ¬ and ∨ the usual way. The Boolean value of formula ϕ under valuation v is
denoted [ϕ]v. We write v |= ϕ, and say that v is a model of ϕ when [ϕ]v = 1. For ϕ and
ψ two formulas we write ϕ ⇒ ψ when [ϕ]v ≤ [ψ]v for all valuations v, and ϕ⇔ ψ
when [ϕ]v = [ψ]v for all valuations v. Note that implication (⇒) induces a partial order
over classes of equivalent (⇔) formulas.

In some sense, we are looking for an interpolant between the valuation v and the
formula ϕ. That is, a formula γ such that v |= γ and γ⇒ ϕ. The least general explanation
of ϕ relative to some trace v |= ϕ is a term representing the entire valuation v. It is
intuitively clear, however that we opt for explanations that are smaller and more general.
Conversely ϕ itself is the most general explanation for v |= ϕ, and is too general in some
sense.

Intuitively, we would simply like to omit “don’t care” variables, those whose valuation
can be changed without changing the value of the formula [103]. We aim at providing
explanations that use small subsets of “do care” variables. The notion of interpolant

1This presupposes that the specification language has a complement operation.
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does not capture precisely this intuition of an explanation. An interpolant may be of
disjunctive nature, while our explanation must be unique. A better definition of an
explanation requires that the explanation is also purely conjunctive, in other words an
implicant ofϕ satisfied by v. The most general explanations are then the prime implicants
of ϕ. Let us recall the definition of implicants of a formula.

Definition 4.1 (Literals, Terms, Implicants and Prime Implicants). A literal is an atomic
proposition or its negation. A term is a conjunction of literals. An implicant of formula ϕ is
a term γ such that γ⇒ ϕ. A prime implicant of ϕ is an implicant maximal relative to⇒.

The diagnostics problem can the be defined as follows.

Problem ((Minimal) Diagnostics). Given a formula ϕ and valuation v |= ϕ, find a (prime)
implicant γ of ϕ such that v |= γ. Given a formula ϕ and valuation v 6|= ϕ, find a (prime)
implicant γ of ¬ϕ such that v |= γ.

4.2.2 Syntactic and Semantic Formulations

Take ϕ a formula, v a model of ϕ and γ a solution to the corresponding diagnostics
problem. As γ⇒ ϕ, there exists a proof of ϕ under hypothesis γ; a correct algorithm
producing the diagnostics is implicitly constructing that proof. The more general the
implicant is, the more complex the associated proof can be.

Example 4.1. Let ϕ = (p ∧ q) ∨ (p ∧ ¬q) and v = {p 7→ 1, q 7→ 0, r 7→ 0}. The formulas
α = p and β = p ∧ ¬q are both implicants of ϕ, and satisfied by v with α being a prime
implicant of ϕ.

Let us say that u is a partial valuation of P when u is a valuation of some set U ⊆ P.
We now propose some semantic counter-parts of implicants, beginning with a refinement
relation v between valuations.

Definition 4.2 (Valuation Refinement). Let U , V ⊆ P be subsets of variables. For partial
valuations u ∈ 2U and v ∈ 2V we write uv v when U ⊆ V and pu = pv for all p ∈ U.

The space of partial valuations of P is a semi-lattice with respect to v with a meet
operation denoted u and a least element denoted 0. Let u and v be some valuations of
variables in U and V respectively. The valuation uu v has domain {p ∈ U ∩ V : pu = pv}
and value puuv = pu(= pv) where defined. The least element 0 is the nowhere-defined
valuation.

One can think of a valuation v over V ⊆ P as a compact representation for all valua-
tions w over P such that vv w. A valuation v corresponds to a term γ(v), the conjunction
of literals true according to v, and reciprocally any satisfiable term γ corresponds to a
valuation v(γ), that assigns a value to variables according to the literals in γ.

Definition 4.3 (Sub-Model). A partial valuation v is a sub-model of ϕ if for all valuations
w over P such that v v w we have w |= ϕ; if moreover v is minimal with respect to v we
talk of minimal sub-model.
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A valuation v is a sub-model of ϕ if and only if γ(v) is an implicant of ϕ. The
(minimal) diagnostics problem for ϕ relative to w can thus be formulated equivalently
as the problem of finding a (minimal) sub-model of ϕ contained in w.

4.2.3 Practical Solution

Note that the minimal diagnostics problem is at least as hard as satisfiability, since
tautologies can be recognized by the fact that they admit a unique prime implicant, the
empty term >. However if we relax the minimality assumption, knowing the truth value
of each subformula of ϕ on w enables us to construct implicants γ such that w |= γ in a
simple, top-down fashion. We construct an implicant of every formula by combination
of implicants of its subformulas; these implicants are also satisfied by w. Accordingly we
define an explanation operator Ew (and its falsification dual Fw) that for a given formula
ϕ returns an implicant of ϕ (respectively of ¬ϕ) which under suitable assumptions is
satisfied by w. The diagnostic of ϕ is defined as

Dw(ϕ) =
§

Ew(ϕ) if w |= ϕ
Fw(ϕ) otherwise

with

Ew(>) => Fw(>) =⊥
Ew(p) = p Fw(p) = ¬p

Ew(¬ϕ) = Fw(ϕ) Fw(¬ϕ) = Ew(ϕ)
Ew(ϕ1 ∨ϕ2) = Ew(ξw(ϕ1 ∨ϕ2)) Fw(ϕ1 ∨ϕ2) = Fw(ϕ1)∧ Fw(ϕ2)

where ξw is a selection function satisfying ξw(ϕ1∨ϕ2) ∈ {ϕ1,ϕ2}. We say that ξw is correct
with respect to w if for any formulaϕ1∨ϕ2 such that w |= ϕ1∨ϕ2 it holds w |= ξw(ϕ1∨ϕ2).
We can take for example

ξw(ϕ1 ∨ϕ2) =
§

ϕ1 if w |= ϕ1

ϕ2 otherwise

This may represent the user’s intent of giving priority to the left disjunct. Under the
assumption that ξw is correct with respect to w, the formula Dw(ϕ) is a solution to the
diagnostics problem associated with ϕ and w.

In the case of Example 4.1, applying the procedure to ϕ and w yields the explanation
β (only one selection function for the disjunction in ϕ is correct relative to w).

4.3 Temporal Implicants

4.3.1 Semantics

Let us fix a temporal domain T = [0, d], and define a trace w as an application from
T×P to {0,1}, which we write w ∈ 2T×P. Notations are otherwise unchanged, since up
to isomorphism, (2P)T = (2T)P = 2T×P.
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We now introduce, similarly to partial valuations in the propositional case, the notion
of sub-trace. A sub-trace is simply a trace with domain V ⊆ T× P. We define over sub-
traces a partial order denoted v as follows. Sub-traces u and v with respective domains
U and V verify u v v if and only if U ⊆ V and pu(t) = pv(t) for all (t, p) ∈ U . Given
formula ϕ and sub-trace v, we say that v is a sub-model of ϕ if w |= ϕ for all traces w
such that vv w. Meet operation u and least element 0 are defined as with propositional
valuations.

We denote L = P ∪ {¬p : p ∈ P} the set of literals formed with propositions in P.
To ensure finite representation we place similar restrictions on sub-traces as we do for
full traces. A finite variability sub-trace v is such that the satisfaction set [`]v of every
literal ` ∈ L can be written as finite union of intervals of T. In what follows we assume
all traces and sub-traces have finite variability. Unfortunately due to simple topological
considerations, bounding the variability in a uniform manner does not guarantee the
existence of a minimal sub-model, as we see in the following example.

Example 4.2. The formula ϕ = p U> has no minimal sub-model over the dense temporal
domain T= [0, 1]. Consider the monotone sequence (vi) of sub-models of ϕ with variability
1, and domain (0, 1

i )× {p}. The sub-trace
d∞

i=1 vi = 0 is not a sub-model of ϕ.

To overcome such problems we extend the temporal domain T = [0, d] with some
additional numbers in the set T+ = {t+ : t ∈ [0, d)} and T− = {t− : t ∈ (0, d]}, letting
T± = T∪T+ ∪T−. We use such non-standard numbers as customary, denoting f (t+) the
right limit of some signal f at time t, and f (t−) its left limit. Any finite variability signal
over T naturally extends to a signal over T±.

4.3.2 Syntax

We now introduce sentences based on (possibly infinite) conjunctions of unary predicates
p(t) and their negation ¬p(t) for some (non-standard) real in t ∈ T±.

Definition 4.4 (Terms, Implicants and Prime Implicants). Temporal terms are are defined
using the grammar

γ ::= p(t) | ¬p(t) | γ∧ γ |
∧

t∈T

θ (t)

where p ∈ P is a propositional variable, t is a time in T±, T is a subset of T±, and θ a
mapping from T± to temporal terms. When θ is a constant term γ with one free variable t,
we write the last form

∧

t∈T γ(t). The semantics |= of temporal terms relative to a trace w
are given by

w |= p(t) iff pw(t) = 1

w |= ¬p(t) iff pw(t) = 0

w |= γ1 ∧ γ2 iff w |= γ1 and w |= γ2

w |=
∧

t∈T

θ (t) iff ∀t ∈ T, w |= θ (t)

An implicant of some temporal formula ϕ is a temporal term γ such that γ⇒ ϕ. We talk
of prime implicant when γ is maximal with respect to⇒.
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The above definition of temporal terms allows arbitrary mappings θ under infinite
conjunctions, which is convenient for inductive manipulations. However temporal terms
can always be written in a simpler normal form as follows.

Proposition 4.5 (Normal Form). For every temporal term γ there is an equivalent temporal
term of the form

∧

`∈L

∧

t∈T (`,γ) `(t). Given an ordering of literals in L this normal form is
unique.

Proof. Straightforward by induction on the structure of the term γ. We collect T(`,γ)
from the sub-terms of γ by replacing conjunctions of terms with unions of their temporal
domains, for each literal `. Now, assuming that conjunctions in γ appear in the order
according that over L, we can easily show that for two distinct terms γ, γ′ of the form
above, there exists a literal ` and time t such that t ∈ T (`,γ) while t /∈ T (`,γ′) and thus
γ′ 6⇒ γ, or vice-versa.

For any term γ we will now use the notation
∧

`∈L

∧

t∈T (`,γ) `(t) for its normal form,
with function T associating each literal and term with a subset of T. Intuitively T(`,γ)
is the part the temporal domain where implicant γ states that ` should hold.

It is clear that normal form temporal terms are isomorphic to sub-traces over T±.
Notably the relation⇒ defines a partial order over normal form terms. Given arbitrary
terms α and β , one can check that it holds α⇒ β if and only if T (`,β) ⊆ T (`,α) for all
` ∈ L.

4.3.3 Minimality

We have seen in Example 4.2 that some formulas impose conditions on limit values
of satisfaction signals. It is clear that introducing non-standard reals will address the
problem occurring in Example 4.2, and related problems in which finitely many limit
conditions are involved. Due to density of the domain, some formula can place an infinite
number of such conditions. However as the temporal domain is bounded, we still obtain
the existence of at least one prime implicant for every satisfiable formula.

Theorem 4.6 (Existence of Prime Implicants). For any formula ϕ and trace w such that
w |= ϕ there exists a prime implicant γ of ϕ over T± such that w |= γ.

This result crucially relies on two assumptions on the input trace w: (1) the temporal
domain T of w is bounded; (2) at every point in T the left and right limits of w are defined.
Recall that we use finite variability semantics over T= [0, d], which clearly entails point
(2). We will use the boundedness of the temporal domain to apply Bolzano-Weierstrass
Theorem, in order to systematically eliminate potential counter-examples in the form of
Example 4.2. We state below this famous theorem, in its simplest form. Let (ri) and (si)
be two infinite sequences, indexed by natural numbers. Recall that (si) is a subsequence of
(ri) if there exists a strictly increasing sequence of natural numbers (ki) such that si = rki

for all i.

Bolzano-Weierstrass Theorem. Any bounded sequence of real values has a monotone and
convergent subsequence.
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In order resolve issues with partial ordering of implicants, we will exercise the axiom
of choice under the guise of the following well-known statement.

Zorn’s Lemma. Any partially ordered set, containing upper bounds for each of its totally
ordered subsets, contains at least one maximal element.

We are now ready to establish the main result of this section.

Proof of Theorem 4.6. Let us denote by Γ the set of implicants γ of ϕ such that w |= γ,
that we assume in normal form. The trace w seen as a temporal term is itself an implicant
of ϕ. This gives us Γ 6= ;. We now demonstrate the existence of a maximal element of Γ
relative to⇒ by application of Zorn’s Lemma as follows. Consider ∆ an arbitrary totally
ordered subset of Γ . First we can see that∆ is bounded by the temporal term α such that
T(`,α) =

⋂

γ∈∆ cl(T(`,γ)), where cl(T(`,γ)) denotes the closure of T(`,γ) in T±. This
does not pose any difficulty. We then show that moreover α ∈ Γ , so that α is indeed an
upper bound of ∆ in Γ . For that we need to show that w |= α which is trivial, and that
α⇒ ϕ. To demonstrate the latter fact we consider an arbitrary model v of α and prove
the existence of some γ ∈∆ such that v |= γ. As ∆ ⊆ Γ this will in turn grant v |= ϕ, by
definition of Γ .

Let v |= α. Assume, in search of a contradiction that v 6|= γ for all γ ∈ ∆. For each
γ ∈ ∆ there exists ` ∈ L and t ∈ T(`,γ) such that [`]v(t) = 0. We may construct
a sequence (γi,`i, t i) of ∆ × L × T± such that t i ∈ T(`i,γ) and [`i]v(t i) = 0 for all
i ∈ N, and such that (γi) is monotone and diverging, that is γi ⇒ γ j if i ≤ j, and for
all γ ∈ ∆ there exists i ∈ N such that γ ⇒ γi. We take si ∈ T the standard part of t i,
that is t i ∈ {s+i , s−i , si}. As L is finite, we can safely assume that the sequence (`i) is
constant. As T is bounded, by Bolzano-Weierstrass Theorem we may in turn assume
that the sequence (si) is monotone and convergent, an assumption that we extend to
(t i). Let us write ` the value of (`i), and t the limit of (t i). As (γi) is monotone, the
subsequence of times (t j) j≥i has all its values in T(`,γi, ), so that t ∈ cl(T(`,γi)). In
particular t ∈

⋂

i∈N cl(T(`,γi)) =
⋂

γ∈∆ cl(T(`,γ)) = T(`,α) given that (γi) is diverging.
Then t ∈ T (`,α) yields [`]v(t) = 1. By finite variability of v, as (t i) converges to t there
exists i such that [`]v(t i) = 1. Yet [`]v(t i) = 0 by hypothesis. Contradiction! Therefore
there exists γ ∈∆ such that v |= γ. It follows that v |= ϕ.

This holds for every model v of α, therefore α⇒ ϕ. Implicant α is a maximal element
of ∆. This holds for every totally ordered subset of Γ . By Zorn’s Lemma the set Γ has a
maximal element relative to⇒, in other words formula ϕ has a prime implicant satisfied
by trace w.

4.4 Computation

In this section, we propose an effective procedure to compute implicants of an MTL
formula ϕ relative to a finite trace w of length d. First, note that the satisfaction signal
[ϕ]w of a given formula ϕ relative to a finite variability trace w has itself finite variability,
the variability of satisfaction signals growing at most quadratically with the size of the
formula. Like satisfaction, an explanation for a temporal formula is time dependent and
should be a function from the temporal domain to formulas that explain satisfaction or
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violation from some time t. Analogously to the notion of satisfaction signal [ϕ]w ∈ 2T

we define the notion of explanation signal denoted Ew(ϕ) such that Ew(ϕ)(t) explains
the satisfaction of ϕ by w from time t ∈ T. We then construct explanations through
definitions of Ew(ϕ)(t) and its dual Fw(ϕ)(t), which are inductive on the structure of
formula ϕ, and on the times t at which explanations of its subformulas are required. We
are able to guarantee finite representation by producing finite variability explanation
signals. We use selection functions ξϕw to relate the truth of some formula ϕ at time t
with the truth of its direct subformulas at some time ξϕw(t). Arbitrary selection functions
may yet lead to explanations which are almost as large as the trace itself, however we
can find selection functions that allow best “explanation sharing”. For instance given a
non-singular interval I the same t ′ may belong to t ⊕ I for every t in some interval T .
Hence a selection function satisfying ξϕw(t) = t ′ for every t ∈ T will use only one point
to witness the satisfaction of ϕ = ◊Iψ throughout T .

4.4.1 Metric Temporal Logic

In this section MTL formulas are given by the following syntax:

ϕ ::=> | p | ϕ ∨ϕ | ¬ϕ | ◊I ϕ | ϕUϕ

where p is a proposition in P, and I is an interval in R≥0. We further assume that all
such intervals I ⊆ R≥0 has integer bounds, which can always be achieved by scaling
considering formulas with rational timing constants. Semantics of MTL formulas are
given inductively as follows:

(w, t) |= p iff t ∈ pw

(w, t) |= ¬ϕ iff (w, t) 6|= ϕ
(w, t) |= ϕ1 ∨ϕ2 iff (w, t) |= ϕ1 or (w, t) |= ϕ2

(w, t) |= ϕ1 Uϕ2 iff ∃t ′ > t, (w, t ′) |= ϕ2 and ∀t ′′ ∈ (t, t ′), (w, t ′′) |= ϕ1

(w, t) |= ◊I ϕ iff ∃t ′ ∈ t ⊕ I , (w, t ′) |= ϕ

Thanks to the until rewrite rules of Proposition 3.1, these definitions of MTL are equivalent
to those of Section 3.2.1 as far as expressiveness is concerned.

We extend the notion of satisfaction signal [ϕ]w to sets of formulas Ψ, by letting
[Ψ]w ∈ 2T×Ψ be a multi-dimensional signal featuring the corresponding |Ψ| satisfaction
signals [ψ]w for ψ ∈ Ψ. The satisfaction signals of ϕ and of all its subformulas ψ are
assumed to be given as the result of applying a monitoring procedure, such as the one
described in Section 3.2.3, to w and ϕ.

For the purpose of handling the negation of an until formula we introduce its dual
operation release defined by ϕRψ= ϕU> ∨ ψU(ψ∧ϕ Ũϕ) ∨ �(0,∞)ψ. The release
and until operators verify the following property.

Proposition 4.7 (Until Duality). For any formulas ϕ, ψ it holds ¬(ϕUψ)⇔¬ϕR¬ψ.

The negation of an until formula is explained this way: ϕUψ does not hold if ϕ is
immediately false, or if ϕ becomes false before (or immediately when) ψ becomes true,
or if ψ never holds in the future.
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The remainder of this section is organized as follows. We begin by extending the
semantics of MTL to handle limits so as to conveniently represent earliest, and latest
witnesses. Informally, a witness of some formula is some time at which a subformula
holds and which is sufficient to account for the formula’s satisfaction. The definition of
explanation operators is then given in full. Following developments describe a procedure
to compute an instance of selection functions correct with respect to a given signal. An
example and further remarks conclude this section.

4.4.2 Non-Standard Semantics

To facilitate the definitions of witnesses of a formula, we extend MTL semantics to time
domains with non-standard reals t+ and t−, representing limit points as previously. The
relation < over the reals of T= [0, d] extends into a transitive, antisymmetric relation
over T± using the following additional equations, for all s ∈ (0, d] and t ∈ [0, d):

s− < s t < t+

s− < s− t+ < t+

and taking the transitive closure. Note that with this definition, relation < is not rig-
orously speaking an order relation over T±: it is reflexive (strict) over the reals, but
antireflexive (non-strict) over non-standard reals. Non-strict order relation ≤ is defined
over T± by letting t ≤ t ′ if and only if t < t ′ or t = t ′ for all t, t ′ ∈ T±. We use interval
notations [t, t ′], (t, t ′), (t, t ′], and [t, t ′)with their usual meaning in terms of inequalities
< and ≤ over T±.

The sum of a symbolic limit t+, respectively t−, and a real number a is taken as
(t + a)+, respectively (t + a)−. The sum T ⊕ I of an interval T ⊆ T± and an interval I of
R≥0 is defined as the convex hull in T± of the Minkowski sum {t + a ∈ T± : t ∈ T, a ∈ I},
and similarly for the difference T 	 I . We use abbreviations t ⊕ I and t 	 I as previously.

Recall from Section 4.3.1 that any trace w over T extends to a trace over T± by
defining its value in t+ and t− in terms of right- and right- limits respectively. Let us write
(w, t) |=± ϕ to signify that the extension to T± of some trace w over T satisfies formula ϕ,
using T± as temporal domain. The following proposition states that such a non-standard
semantics is consistent with the standard one.

Proposition 4.8. Let w be a finitely variable trace over T, and ϕ an MTL formula.

• For any t ∈ T, (w, t) |=± ϕ if and only if (w, t) |= ϕ.

• For any t ∈ T+, (w, t) |=± ϕ if and only if ∀δ > 0, ∃ε ∈ (0,δ), (w, t + ε) |= ϕ.

• For any t ∈ T−, (w, t) |=± ϕ if and only if ∀δ > 0, ∃ε ∈ (0,δ), (w, t − ε) |= ϕ.

Proof (sketch). The proof is by induction on the formula structure. We show that for
finitely variable traces, the limit [ϕ]w(t

+) is defined everywhere in [0, d) and [ϕ]w(t
−)

everywhere in (0, d]. In particular the negation gives us the only if part, and can be
proved using the following fact: given f a signal admitting a right-limit at t, it holds
∀δ > 0, ∃ε ∈ (0,δ), f (t + ε) = 1 if and only if ∃δ > 0, ∀ε ∈ (0,δ), f (t + ε) = 1, and
similar for t−.
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Hence we may simplify the notation, and safely write (w, t) |= ϕ in place of (w, t) |=±
ϕ for any trace w, formula ϕ, and (non-standard) time t ∈ T±.

4.4.3 Explanation Operators

We may now define Ew(ϕ)(t) and Fw(ϕ)(t) providing explanations of ϕ, or ¬ϕ, relative
to trace w at time t ∈ T± in the form of temporal terms. The diagnostic of formula ϕ
relative to trace w is then given by the value at time 0 of Ew(ϕ) in case of satisfaction, or
that of Fw(ϕ) in case of violation. We let

Dw(ϕ) =
§

Ew(ϕ)(0) if (w, 0) |= ϕ
Fw(ϕ)(0) otherwise

with

Ew(>)(t) => Fw(>)(t) =⊥
Ew(p)(t) = p(t) Fw(p)(t) = ¬p(t)

Ew(¬ϕ)(t) = Fw(ϕ)(t) Fw(¬ϕ)(t) = Ew(ϕ)(t)

Ew(ϕ ∨ψ)(t) = Ew(ξ
ϕ∨ψ
w (t))(t) Fw(ϕ ∨ψ)(t) = Fw(ϕ)(t)∧ Fw(ψ)(t)

Ew(◊I ϕ)(t) =
§

Ew(ϕ)(t + a) if I = [a, a]
Ew(ϕ)(ξ◊I ϕ

w (t)) otherwise Fw(◊I ϕ)(t) =
∧

t ′∈t⊕I

Fw(ϕ)(t
′)

Ew(ϕUψ)(t) = Ew(ψ)(ξ
ϕUψ
w (t))∧

∧

t ′∈(t,ξϕUψ
w (t))

Ew(ϕ)(t
′) Fw(ϕUψ)(t) = Ew(¬ϕR¬ψ)(t)

where the selection functions ξϕ∨ψw from T± to formulas, ξ◊I ϕ
w and ξϕUψ

w from T± to T±

are such that for all t ∈ T±, it holds ξϕ∨ψw (t) ∈ {ϕ,ψ}, ξ◊I ϕ
w (t) ∈ t ⊕ I and ξϕUψ

w (t)> t.

We say that a selection function ξϕw is correct with respect to w if for all t ∈ T± such
that (w, t) |= ϕ we have

• (w, t) |= ξϕw(t) when ϕ is of the form ψ1 ∨ψ2;

• (w,ξϕw(t)) |=ψ when ϕ is of the form ◊Iψ;

• (w,ξϕw(t)) |=ψ2 and ∀t ′ ∈ (t,ξϕw(t)), (w, t ′) |=ψ1 when ϕ is of the form ψ1 Uψ2.

The following theorem, that states our approach is consistent, is straightforward to
establish by structural induction. The proof consists in checking the logical dependency
between a formula and its subformula for propositional operators, and ensuring that
witnesses provided by selection function are sufficient to account for the satisfaction or
violation of the main formula for temporal operators.

Theorem 4.9 (Soundness). A term Dw(ϕ), correct with respect to trace w is a solution to
the diagnostics problem of ϕ with respect to w.

Given finite variability selection functions, the diagnostic Dw(ϕ) can be effectively
represented.
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Proposition 4.10 (Finite Representation). Assuming all selection functions are finitely
variable, the term Dw(ϕ) has a normal form

∧

`∈L

∧

t ′∈T`
`(t ′) such that each T` is a finite

union of intervals of T±.

Proof. We prove the property by induction on the formula structure. First notice that
singular conditions `(t) are equivalent to

∧

t ′∈[t,t] `(t
′). This takes care of atomic formu-

las. The negation case is follows directly from the induction hypothesis and duality of
explanation and falsification. For all other MTL operators it is sufficient to consider the
expansion of the term produced by our procedure under a single conjunction ranging
over an interval T . Namely we show that any term

∧

t∈T θ(t) where θ is a diagnostic
(explanation or falsification) for ϕ can be replaced with a finite conjunction of terms
∧

t∈T ′ θ
′(t) or simply θ ′(t ′) for t ′ ∈ T±, T ′ an interval of T±, and θ ′ a diagnostic for

subformulas of ϕ.
Explaining a disjunction produces

∧

t∈T

E(ϕ ∨ψ)(t) =
∧

t∈T

E(ξϕ∨ψ(t))(t)⇔
k
∧

i=1

∧

t∈Ti∩T

E(ϕ)(t)∧
n
∧

i=1

∧

t∈T ′i

E(ψ)(t)

where Ti, T ′i are intervals of T± that can be obtained according to the finite-variability of
ξ. The falsification of a disjunction is direct. For the falsification of an eventually formula
we obtain

∧

t∈T

F(◊I ϕ)(t) =
∧

t∈T

∧

t ′∈t+I

F(ϕ)(t ′)⇔
∧

t ′∈T+I

F(ϕ)(t ′)

where T + I =
⋃

t∈T t + I is an interval of T±. The explanation of an eventually formula
is treated as follows:

∧

t∈T

E(◊I ϕ)(t) =
∧

t∈T

E(ϕ)(ξ(t))⇔
k
∧

i=1

E(ϕ)(t i)

for some finite sequence of times (t i)i≤k thanks to the finite-variability of ξ. For the
explanation of an until formula we write

∧

t∈T

E(ϕUψ)(t) =
∧

t∈T

E(ψ)(ξ(t))∧
∧

t ′∈(t,ξ(t))
E(ϕ)(t ′)⇔

k
∧

i=1

E(ψ)(t i)∧
∧

t ′∈(si−1,t i)

E(ϕ)(t ′)

given (t i)i=1..k the finite sequence of switching points of ξ over T , s0 = min T , and si

the standard part of t i for all i > 0. The falsification of an until formula is handled by
rewriting and goes through cases already verified.

4.4.4 Selection Functions

We now describe some procedures defining explicit instances of selection functions, which
satisfy the correctness and finite variability criteria. The explanation operators can then
be made constructive when the normalization of the terms they produce is interleaved
with the instantiation of selection functions over intervals appearing in the normalization
process. It is indeed sufficient to define selection functions piecewise, on closed intervals
T of T±. Furthermore we can assume that for such intervals T , formula ϕ holds for
all t ∈ T as the correctness assumption is void outside such intervals, with the finite
variability assumption then trivial to fulfill.
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Disjunction

Consider the formula ϕ ∨ψ, and a trace w. A finitely variable selection function ξϕ∨ψw
correct with respect to w can be constructed as follows. By finite variability hypothesis on
w, the satisfaction signal [ϕ,ψ]w has finite variability over any interval T where ϕ ∨ψ
holds. We partition T in k maximally uniform intervals Ti, and take ξϕ∨ψw (t) = ϕ over
intervals Ti where (w, t) |= ϕ, and ξϕ∨ψw (t) =ψ over other intervals. The function ξϕ∨ψw
is uniform over all Ti, hence it has finite variability.

Timed Eventually

Now consider the formula ◊I ϕ for a non-singular interval I , and a trace w. Assume that
ϕ is satisfied by w continuously over some time interval T . We build a procedure that
generates a small set of witnesses of ϕ accounting for the satisfaction of ◊I ϕ by w over
T . The satisfaction of ◊I ϕ over T can be explained by the satisfaction of ϕ at some
time points (witnesses) in T ⊕ I , and in particular the satisfaction of ϕ at some s ∈ T ⊕ I
provides a sufficient explanation for the satisfaction of ◊I ϕ for all t ∈ (s	 I)∩ T . We use
these two observations to generate a piecewise constant selection function ξ◊I ϕ

w defined
over T and correct relative to a given trace w.

Algorithm 4.1 WITNESSES(◊I ϕ, w)
1: ξ◊I ϕ

w := ;
2: while T 6= ; do
3: t :=min(T )
4: S := (t ⊕ I)∩ {t ′ : (w, t ′) |= ϕ}
5: s :=max(S)
6: R := (s	 I)∩ T
7: ξ◊I ϕ

w := ξ◊I ϕ
w ∪ (R× {s})

8: T := T \ R
9: end while

10: return ξ◊I ϕ
w

We present the procedure in Algorithm 4.1; it works as follows. The selection function
is initialized (line 1) as nowhere defined. In every iteration of the main while loop (line
2), we find a temporal domain S = (t ⊕ I) ∩ {t ′ : (w, t ′) |= ϕ} such that ϕ is satisfied
inside S and any point in S provides a sufficient explanation for the satisfaction of ◊I ϕ
at t taken as the earliest time of T . Such set S is obtained directly from the satisfaction
signal [ϕ]w assumed to be already computed by the monitoring procedure. We then take
s the latest time of S, which constitutes a minimal subset of S sufficient to explain the
satisfaction of ◊I ϕ throughout the domain s	 I; when intersected with T it gives R, a
prefix of T . At the end of the iteration, the definition of ξ◊I ϕ

w over the interval R is taken
as s, which we may write R× {s} identifying selection functions with subsets of T± ×T±
(line 7). The covered prefix R can be removed from T (line 8). The procedure terminates
when sufficient witnesses of ϕ are found, i.e. when T the domain remaining to cover
becomes empty.
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ϕ

◊I ϕ

•
t

• s

already covered R

T

t ⊕ I

Figure 4.2: Example of R and s computation for ◊I ϕ.

Untimed Until

Consider the formula ϕUψ and a trace w, and assume that the formula is satisfied over T ,
taken without loss of generality to be a closed interval of T±. For t ∈ T±, similarly to the
case of timed eventually a single witness t ′ > t of ψ along with a uniform interval (t, t ′)
where ϕ holds is sufficient to explain the satisfaction of ϕUψ over the whole interval
[t, t ′). With such observations we generate a piecewise constant selection function ξϕUψ

w
correct with respect to w and defined over T . We make use of a subroutine Zw(ϕ,ψ, t)
that returns the set of witnesses of ψ in trace w that are sufficient to explain ϕUψ at
time t ∈ T± where ϕUψ holds. We have

Zw(ϕ,ψ, t) = {t ′ > t : (w, t ′) |=ψ and ∀t ′′ ∈ (t, t ′), (w, t ′′) |= ϕ}

Assuming the satisfaction signals [ϕ]w and [ψ]w given by the monitoring algorithm, the
procedure Zw(ϕ,ψ, t) can be realized as follows. First write the domain {t ′ ∈ T± : t ′ > t}
as a finite partition into uniform intervals of T± with respect to [ϕ,ψ]w that we can
assume of the form [t i, t i] and (t i, t i+1) with (t i)i≤n an ordered sequence of times, as
explained in Section 3.2.3. Start from the interval containing t0 = t and iterate through
the intervals, accumulating intervals where ψ holds, until ϕ stops holding at [t i, t i] or
(t i, t i+1), or we reach the interval containing tn = d marking the end of the temporal
domain.

We present the main procedure to compute the selection function in Algorithm 4.2-
(a). The procedure first assigns ξϕUψ

w the empty function ; (line 1). In every iteration of
the while loop, we compute an interval S whose elements s are witnesses of ψ providing
a sufficient explanation for the satisfaction of the ϕUψ throughout [t, s). When S lies
entirely outside T we define s as the earliest suitable witness of ψ, so as not to impose
a condition on ϕ beyond it (line 5). When S intersects with T we look for the latest
suitable witness of ψ in their intersection (line 6); this witness explains the until formula
for all times that precede it (line 8). The interval R = [t, s) ∩ T is now accounted for,
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Algorithm 4.2 WITNESSES(ϕUψ, w)
1: ξϕUψ

w := ;
2: while T 6= ; do
3: t :=min(T )
4: S := Zw(ϕ,ψ, t)
5: if S ∩ T = ; then
6: s :=min(S)
7: else
8: s :=max(S ∩ T )
9: end if

10: R := [t, s)∩ T
11: ξϕUψ

w := ξϕUψ
w ∪ (R× {s})

12: T := T \ R
13: end while
14: return ξϕUψ

w

hence we define ξϕUψ
w as taking the value s over interval R (line 8). Eventually R can be

removed from T for the next iteration (line 9), and the procedure terminates when T
becomes empty.

ϕ

ψ

ϕUψ

•s

•
t

already covered R

T

Zw(ϕ,ψ, t)

Figure 4.3: Example of R and s computation for ϕUψ.

4.4.5 Evaluation

Let us illustrate the overall process of deriving an explanation for a non-trivial formula.
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Example 4.3. Let ϕ = �(�[0,2] p → ◊[4,5] q), and let w be the signal appearing in Fig-
ure 4.4. The diagnostic Dw(ϕ) is illustrated in terms of sub-signals, inductively extracted
from satisfaction signals; its computation is as follows:

Dw(ϕ) = Fw

�

�(�[0,2] p→ ◊[4,5] q)
�

(0)

= Fw

�

�[0,2] p→ ◊[4,5] q
�

(9.7)

= Fw

�

�[0,2] p
�

∧ Fw

�

◊[4,5] q
�

(9.7)

=
∧

t∈[9.7,11.7]

Fw(¬p)(t) ∧ Fw

�

◊[4,5] q
�

(9.7)

=
∧

t∈[9.7,11.7]

Ew(p)(t) ∧ Fw

�

◊[4,5] q
�

(9.7)

=
∧

t∈[9.7,11.7]

p(t) ∧ Fw

�

◊[4,5] q
�

(9.7)

=
∧

t∈[9.7,11.7]

p(t) ∧
∧

t∈[13.7,14.7]

Fw(q)(t)

=
∧

t∈[9.7,11.7]

p(t) ∧
∧

t∈[13.7,14.7]

¬q(t)

According to Dw(ϕ), formula ϕ is violated by trace w because p is true over [9.7, 11.7] and
q is false over [13.7, 14.7].

0 2 4 6 8 10 12 14
t

p

q

◊[4,5] q

�[0,2] p

�[0,2] p→ ◊[4,5] q

�(�[0,2] p→ ◊[4,5] q)

Figure 4.4: The trace w and diagnostic of ϕ = �(�[0,2] p → ◊[4,5] q) produced by our
algorithms: trace, satisfaction signals, and shaded sub-signals. Red arrows exhibit the
dependencies between implicants of some formula and those of its direct subformulas.

We now examine the complexity of our algorithm. Let us define the size of formulas
and traces as in Chapter 3. We make the additional assumption that all traces have a
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variability bounded by some constant c, that is all signals appearing in a trace w have at
most c discontinuities per time unit.

Theorem 4.11. Computing Dw(ϕ) with our algorithms has time-complexity in O(|ϕ|2 · |w|).

Proof (sketch). The proof proceeds by induction on the formula structure. We show
similarly to Theorem 3.6 that the number of terms in the explanation of a formula is
linear in |ϕ| · |w|. Note that for a timed eventually operator ◊I , the number of witnesses
needed is at most twice the size of trace divided by the variability c, given that interval
I has integer bounds. Computing the satisfaction signal and diagnostics with such a
complexity for each subformula creates an additional factor |ϕ|.

As mentioned earlier, our procedure does not guarantee minimality, as it does not
recognize tautologies. However we obtain some form of temporal minimality through the
proposed construction for selection functions. Intuitively each time a witness is required
we select the furthest away, which maximizes the interval over which that witness is
valid. Let ϕ be an eventually or until formula, w a trace such that ϕ holds for w on some
domain T . One can see that selection functions ξϕw constructed by our algorithms choose
a set of witnesses ξϕw(T ) = {ξ

ϕ
w(t) : t ∈ T}, which is minimal relative to w.

The main advantage of our explanation principle is its hierarchical character: every
subformula has its own explanation, which is used in turn to account for the satisfaction
or violation of its super-formulas. The process of fault-finding is progressive: if the fault
lies in the specification then it can be localized syntactically, and otherwise the parts
of the specification that explain the failure give additional insight. In the presences
of multiple explanations, a user of our procedure can be given the choice between
several alternatives. The hierarchical decomposition we propose also enables us to solve
the diagnostics problem efficiently. Under a uniform bounded variability assumption,
computing Dw(ϕ) with our algorithms takes time quadratic in the size of the formula
and linear in the size of the input trace. The minimal diagnostics problem has a higher
complexity. By reduction to the satisfiability of MTL over bounded time [99], minimal
diagnostics is EXPSPACE-hard in the size of the formula.



5

Robustness Analysis

Traditionally, monitoring some temporal formula ϕ only gives a pass or fail verdict for
a given trace w. The robustness value, defined in what follows, enables in addition to
estimate the distance from w to the boundary between satisfaction and violation of ϕ.
In this chapter we solve the robust monitoring problem for a variant of Metric Temporal
Logic. This variant is obtained by considering MTL over continuous-time Boolean and
real signals, and using propositions x > c for real signals x and constants c. The result-
ing specification language, dubbed Signal Temporal Logic (STL), provides a convenient
framework for specifying properties of continuous-time signals. An important application
of robust monitoring is to help find the stimulus or parameter set that leads to the viola-
tion of a property; this can be done using an off-the-shelf continuous optimization routine
in order to minimize the robustness value. The method that we propose operates directly
on piecewise linear signals, and thus does not introduce additional error due to sam-
pling. The efficiency of resulting algorithms is comparable to that of standard (pass/fail)
monitoring algorithms, in terms of theoretical complexity and practical performance.

5.1 Introduction

Signal Temporal Logic [83, 86] is becoming an established formalism for the specification
of continuous-time behaviors. A monitoring tool called AMT [96] has been developed
and used in the context of analog and mixed-signal circuits [68, 85]. In assertion based
verification, and more specifically in the analog and mixed signal domain, a pass/fail
status only provides partial information and could be augmented with quantitative in-
formation about the satisfaction, so as to provide a better basis for decision making.
To illustrate, consider the safety condition x ≤ c for constant c and a real variable x .
The condition splits the values v of x into safe ones S = {v : xv ≤ c} and unsafe ones
S = {v : xv > c}. For a given value v of x , the answer to the satisfaction query x ≤ c
depends on the membership of v in S but not on its relative position inside or outside
S. The robustness of the formula x ≤ c relative to v should tell us whether v satisfies the
property by far (xv = c − δ for a large δ) or very marginally (xv = c − δ for a small δ).
For this example, the robustness degree is captured by c − xv whose sign indicates satis-

52
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faction/violation and its magnitude indicates the distance between xv and the boundary
between S and S.

Of course the computation of this distance is trivial for a single proposition x ≤ c and
fixed valuation v. Signal Temporal Logic on the other hand allows to specify propositional
combinations of such threshold propositions, and their temporal evolution. For example
consider the formula ϕ = �(x > c) → ◊[0,b](y ≤ d), which reads “always when x is
above value c, eventually within b time units, y is at most d”. Computing the distance
of some trace w with real variables x and y violating ϕ to a nearest trace satisfying
ϕ, is not as simple. This distance depends on the distance from x and y to c and d
respectively, and also on their evolution in time. In this chapter we solve this problem
in an approximate fashion by providing a robustness estimate, which is a guaranteed
under-approximation of the real distance to satisfaction (or violation in the opposite
case).

The notion of robustness has been introduced into temporal logic by Fainekos and
Pappas [52] for MTL, and by Fages and Rizk [104] for LTL over real-valued sequences.
The robustness information is useful to assess the severity of an assertion violation, when
part of the assertion ranges over real valued quantities. It can also increase the confidence
in the results of verification when the coverage is small, if it so happens that all sampled
behaviors satisfy the requirements robustly. In [46] the notion of robustness was studied
both in the space and time dimension; Donzé and Maler provided an algorithm for
computing this robustness degree with respect to a given trace. A related problem is that
of computing the distance between two traces according to the Skorokhod metric, which
integrates both the time and space dimensions [42].

The contribution of this chapter is a new, optimal algorithm that computes the ro-
bustness degree in time linear with respect to the signal size. As customary, real valued
signals are represented as sequences of timed-stamped values (discrete-time real signals)
with piecewise-linear interpolation.1 Our algorithms guarantee that the overhead added
by monitoring to the simulation process is acceptable, thus making robustness-based
monitoring a feasible technology that can be used routinely as an add-on for commercial
simulators. This low complexity is due to two key ideas:

• The use of the optimal streaming algorithm of Lemire [79] to compute the min and
max of a discrete time signal over a sliding window;

• The rewriting of the timed until operator as a conjunction of simpler timed and
untimed operators, as explained in Section 3.2.2.

The algorithm has been implemented at the core of Breach [44] which is a toolbox
for simulation-based analysis of hybrid systems developed by Donzé. It has notably
been applied to mine requirements from Simulink models in the automotive industry
[67]. Our implementation outperforms the tool S-TaLiRo [23], which at the time the
experiments were conducted was the only other tool implementing quantitative semantics
for continuous-time.

1Minor adaptations of our procedures are sufficient to handle the case of piecewise-polynomial signals.
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5.2 Signal Temporal Logic

In this section we extend the framework of Chapter 3 for the specification of continuous-
time Boolean and real signals. This framework forms the basis of Signal Temporal Logic,
for which we will give quantitative semantics, directly inspired from the one proposed
by [52] for MTL. We adopt conventions similar to those of Chapter 2 and 3 as follows.

We fix a (continuous) temporal domain T= [0, d], a set of Boolean variables P, and
a set of real variables X. Let R∞ = R ∪ {−∞,+∞} be the totally ordered set of real
numbers extended with a smallest element −∞ and a greatest element +∞. A real
signal is now defined as a function in (R∞)T, mapping times in T to real or infinite
values in R∞. We expect signals given by a simulation trace w not to contain infinite
values. However some derived signals will be taking such values, and thus we adopt
this simplifying convention.2 By convention infR = sup; = −∞, and symmetrically.
A Boolean signal is as previously a function in {0,1}T. A trace w is a valuation of real
variables x ∈ X and Boolean variables p ∈ P into real signals xw and Boolean signals pw
defined over the temporal domain T. Such a trace can be quantized through a set of
threshold propositions of the form x ≤ c and their negation. Formally, the syntax of STL
is as follows:

ϕ ::=> | p | x ≤ c | ¬ϕ | ϕ ∨ϕ | ϕUI ϕ

for p Boolean variable in P, x real variable in X, c a constant in R, and I interval of R≥0.

5.2.1 Qualitative Semantics

For a trace w, the validity of an STL formula ϕ at a given time t ∈ T is set according to
the inductive definitions of Chapter 2. In particular for threshold propositions we have
by definition

(w, t) |= x ≤ c iff xw(t)≤ c

Let us recall the definition of satisfaction signal [ϕ]w by letting

[ϕ]w(t) =
§

1 if (w, t) |= ϕ
0 otherwise

for all t ∈ T.
As we have seen in Chapter 3, monitoring the satisfaction of a formula ϕ can be

done by computing for each subformulaψ of ϕ the entire satisfaction signal [ψ]w. Trans-
lating the semantics of each operator using the operations min, max, and involution
in the canonical Boolean algebra {0,1}, we obtain the equivalent characterization of

2Standard double-precision floating-point numbers have special values representing −∞ and +∞.
Electrical, and other physical quantities typically have a bounded range, so that such infinite values are
merely place holders for some value whose magnitude exceeds that of any other present quantity.
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(qualitative) semantics of STL as follows. For all t ∈ T we have

[>]w(t) = 1

[p]w(t) = pw(t)

[x ≤ c]w(t) =
§

1 if xw(t)≤ c,
0 otherwise

[¬ϕ]w(t) = 1− [ϕ]w(t)
[ϕ ∨ψ]w(t) =max{[ϕ]w(t), [ψ]w(t)}
[ϕUIψ]w(t) = sup

t ′∈t⊕I
min{[ψ]w(t

′), inf
t ′′∈(t,t ′)

[ϕ]w(t
′′)}

Here each operator is interpreted as a signal transducer.

5.2.2 Quantitative Semantics

The previous inductive definition of satisfaction signals only needs a minor modification
to operate over real rather than Boolean values. Given a formula ϕ, trace w, and time
t ∈ T, we define the quantitative semantics JϕKw (t) by induction as follows:

J>Kw (t) = +∞

JpKw (t) =
§

+∞ if pw(t) = 1,
−∞ otherwise

Jx ≤ cKw (t) = c − xw(t)
J¬ϕKw (t) = − JϕKw (t)

Jϕ ∨ψKw (t) =max{JϕKw (t), JψKw (t)}
JϕUIψKw (t) = sup

t ′∈t⊕I
min{JψKw (t

′), inf
t ′′∈(t,t ′)

JϕKw (t
′′)}

It is worth noting that the above inductive rules only differ from the qualitative ones in the
interpretation of the propositions. In the quantitative semantics, threshold propositions
x i ≤ c do not evaluate to +∞ or −∞ but give a real value representing the distance
to satisfaction or to violation, which is then propagated in the formula using operations
min, max, and − over R∞.

Let us write ϕ⇔ ψ when [ϕ]w = [ψ]w for all traces w, and write ϕ ×Ö ψ when
JϕKw = JψKw for all traces w. From the lattice properties of (R∞,<), we are granted
the axioms of associativity, commutativity, neutral element, and distributivity. The mi-
nus function remains involutive, which gives us the usual dualities of temporal logic:
¬(ϕ ∧ψ)×Ö ¬ϕ ∨¬ψ and ¬◊I ϕ×Ö�I ¬ϕ. Derived operators enjoy the same natural
interpretation as in the Boolean semantics:

Jϕ ∧ψKw (t) =min{JϕKw (t), JψKw (t)}
J◊I ϕKw (t) = sup

t ′∈t⊕I
JϕKw (t

′)

J�I ϕKw (t) = inf
t ′∈t⊕I

JϕKw (t
′)

However we do not have over R∞ the whole Boolean algebra, as the axiom of excluded
middle does not hold. For instance x ≤ 0∨ x > 0, whose quantitative semantics is the
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absolute value of x , is not equivalent to >, whose quantitative semantics is +∞. In
general, two STL formulas ϕ and ψ equivalent in the usual, qualitative semantics may
no longer be equivalent in the present, quantitative semantics.

5.2.3 Robustness Estimate

We first define the distance d( f , g) between two Boolean signals f and g as follows,
inherently based on a discrete metric:

d( f , g) =
§

0 if ∀t ∈ T, f (t) = g(t)
+∞ otherwise

We then define the distance d( f , g) between two real signals f and g based on the infinity
norm, and the usual metric on R extended to R∞ as follows:

d( f , g) = sup
t∈T
| f (t)− g(t)|

Finally, the distance d(u, v) between two traces u and v is defined as the maximal distance
between their respective signals, with d(u, v) =maxq∈P∪X d(qu, qv).

The quantitative semantics of STL has two fundamental properties proved in [52],
and restated below. Firstly, whenever JϕKw (t) 6= 0 its sign indicates the satisfaction
status.

Theorem 5.1 (Soundness). Let ϕ be an STL formula, w a trace and t a time in T.

if JϕKw (t)> 0 then (w, t) |= ϕ
if JϕKw (t)< 0 then (w, t) 6|= ϕ

In particular, observe that if JϕKw (0) > 0 then w |= ϕ and symmetrically. Secondly,
if u satisfies ϕ, any other trace v whose pointwise distance from u is smaller than the
quantitative semantics of ϕ at time 0 also satisfies ϕ.

Theorem 5.2 (Correctness). Let ϕ be an STL formula, and u and v two traces.

if u |= ϕ and d(u, v)< JϕKu (0) then v |= ϕ
if u 6|= ϕ and d(u, v)< − JϕKu (0) then v 6|= ϕ

On these grounds we now talk of JϕKw (t) as the robustness estimate at time t, and
also call JϕKw the robustness signal of ϕ with respect to w.

5.2.4 Until Rewrite

The equivalences ϕU[a,b]ψ⇔ ◊[a,b]ψ ∧ ϕU[a,+∞)ψ and ϕU[a,+∞)ψ⇔ �[0,a](ϕ Ũψ)
granted by Proposition 3.1 extend from qualitative to quantitative semantics. Such
equivalences constitute generalized de Morgan laws, in some way. It is indeed possible
to show, according to our proof principle, that any equivalence between negation-free
formulas that holds in the qualitative semantics, also holds in the quantitative semantics.
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Proposition 5.3. For any STL formulas ϕ and ψ, and constants 0≤ a ≤ b it holds

ϕU[a,b]ψ×Ö◊[a,b]ψ∧ϕU[a,+∞)ψ (5.1)

ϕU[a,+∞)ψ×Ö�[0,a](ϕ Ũψ) (5.2)

Proof. We only prove rule (5.1); rule (5.2) follows from the same argument. Fix ϕ and
ψ two formulas, w a trace, and t a time in T. Let c and d stand for robustness estimates
of left-hand, and right-hand formulas of (5.1) at time t, respectively. By definition

c = sup
r∈[t+a,t+b]

min{g(r), inf
s∈(t,r)

f (s)}

d =min{ sup
s∈[t+a,t+b]

g(s), sup
r∈[t+a,+∞)

min{g(r), inf
u∈(t,r)

f (u)}}

Suppose, in search of a contradiction, that c 6= d, for instance c < d. Now consider the
trace v with two real signals defined as xv = f and yv = g. Define the STL formulas α
and β as follows:

α= (x > c+d
2 )U[a,b](y >

c+d
2 )

β = ◊[a,b](y >
c+d

2 )∧ (x >
c+d

2 )U[a,+∞)(y >
c+d

2 )

By commuting the sum of constant − c+d
2 with operations sup and inf, and factoring for

min, we get JαKv (t) = c − c+d
2 < 0 and JβKv (t) = d − c+d

2 > 0. Hence by Theorem 5.1 we
have (v, t) 6|= α, and (v, t) |= β respectively. Yet according to Proposition 3.1 in the usual,
qualitative semantics α⇔ β . Contradiction! Therefore c = d; we have shown thatq
ϕU[a,b]ψ

y
w (t) =

q
◊[a,b]ψ∧ϕU[a,+∞)ψ

y
w (t) for arbitrary time t and trace w, thus

Equation (5.1) holds.

Other cases of until rewrite for open, or semi-open intervals exposed in Section 3.2.2
also extend to quantitative semantics for the same reasons.

5.3 Piecewise Linear Decomposition

In a simulation trace, continuous-time signals are represented as sequences of values
over a discrete temporal domain. The value of a real signal in between two consecu-
tive samples is given by linear interpolation.3 While real signals typically do not have
discontinuities, that is not the case for Boolean signals. In turn robustness signals may
also inherit these discontinuities; thus we consider the general case of piecewise linear
signals, with zero or finitely many discontinuities.

Definition 5.4 (Piecewise Linear Signals). A signal f ∈ (R∞)T over some interval T is
said to be piecewise linear if there exists a finite sequence t0, t1, . . . , tn with t0 = inf T,
tn = sup T such that f is affine on segments (t i, t i+1) for all i < n.

3For other interpolation orders, the property that interests us is that signals and their derivatives are
piecewise monotone.
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The sequence (t i)i≤n is called time sequence of f ; we denote by | f |= n+1 the number
of its elements, and also call it the size of signal f . Such a signal will be represented by
its time sequence t0, t1, . . . , tn and its value sequence

f (t0), f (t+0 ), f (t−1 ), f (t1), f (t+1 ), f (t−2 ), . . . , f (tn)

By extension we say that a trace is piecewise linear if all its signals are piecewise linear.
In what follows, we assume piecewise linear traces.

The key property behind our approach, is that quantitative semantics preserves the
piecewise linear property of signals.4

Theorem 5.5. Let w be a piecewise linear trace. For any formula ϕ the robustness signal
JϕKw is also piecewise linear.

The proof of Theorem 5.5 proceeds by induction on the formula structure. We treat
the case of propositional operators, and expose the general principle for treating the case
of temporal operators. The full analysis of temporal operators is postponed to the next
section, which gives detailed algorithms for computing their robustness signals.

5.3.1 Propositional Operators

Fix w a piecewise linear trace, and ϕ, ψ some temporal formulas. Let us write f = JϕKw
and g = JψKw their respective robustness signals.

For negation, we would like to compute a signal denoted h such that h = J¬ϕKw =
− JϕKw = − f . Let (t i)i≤n be the time sequence of f . Over time sequence of f we have
h(t i) = − f (t i), h(t+i ) = − f (t+i ), and h(t−i ) = − f (t−i ) where defined. Negation commutes
with the interpolation, h= −[ϕ]w. The number of sampling points is unchanged, that is
|h|= | f |.

For disjunction, we would like to compute a signal denoted h such that h= Jϕ ∨ψKw =
max{JϕKw , JψKw}=max{ f , g}. We first build a sequence (si)i≤m containing the sampling
points of both f and g. Now for any time pair si, si+1 such that f (s+i ) − g(s+i ) and
f (s−i+1)− g(s−i+1) do not share the same sign, we add a new time point at the intersection
of f and g in the segment (si, si+1). We denote by (t i)i≤n the resulting time sequence,
such that h is linear over every interval (t i, t i+1). We have h(t i) = max{ f (t i), g(t i)},
h(t+i ) = max{ f (t+i ), g(t+i )}, and h(t−i ) = max{ f (t−i ), g(t−i )} where defined. There are
less than | f | + |g| additional points in the time sequence of h, and at most | f | + |g|
sampling points already present in f and g, so that we have |h| ≤ 4max{| f |, |g|}. The
robustness computation for disjunction is illustrated in Figure 5.1.

5.3.2 Temporal Operators

We treat operator until by rewriting it into untimed until and timed eventually. This
decomposition has been successfully applied to the classical, qualitative monitoring
problem in Chapter 3. Let us focus on the case where the timing constraint is a closed

4In addition, continuity of signals is preserved by the sup and inf operations; thus traces featuring only
continuous (real) signals yield a continuous robustness signal for any formula. Details on how to take
advantage of this fact can be found in [45].
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Figure 5.1: Computation of the robustness signal of ϕ ∨ψ, defined as the pointwise
maximum of robustness signals of ϕ and ψ.

interval; open and semi-open intervals do not pose further difficulty. We have proved in
Proposition 5.3 that the until rewrite rules also hold in the quantitative semantics. For an
unbounded until operator U[a,+∞) we can use the rewrite rule (5.2) directly, whereas for
bounded until we have in the quantitative semantics ϕU[a,b]ψ×Ö◊[a,b]ψ∧�[0,a](ϕ Ũψ)
by chaining rewrite rules (5.1) and (5.2). Operator always being the dual of operator
eventually, it only remains to treat the case of ◊[a,b] with [a, b] a non-singular interval,
and to provide an algorithm for the untimed until. We show in the coming section that
these temporal operators preserve piecewise-linearity, while demonstrating how their
semantics can be computed.

5.4 Algorithms

Algorithm 5.1 SIGNALS(ϕ, w)
select ϕ
case >, p:

return t 7→ +∞· (2[ϕ]w − 1)
case x > c:

return xw − c
case •ψ:

f := SIGNALS(ψ, w)
return COMBINE(•, f )

case ψ1 •ψ2:
f := SIGNALS(ψ1, w)
g := SIGNALS(ψ2, w)
return COMBINE(•, f , g)

end select

The main robustness computation procedure is given in Algorithm 5.4. It inputs a
formula ϕ and a trace w, and outputs a piecewise linear function that represents the
robustness signal of ϕ relative to w. For this the procedure uses a different routine
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COMBINE to treat each operator, which compute the robustness signal of some formula
based on those of its direct subformulas.

From the segment decomposition of operators ¬, and ∨ just described, we can im-
mediately derive the corresponding COMBINE algorithms with time-complexity linear in
the number of samples of input signals. By duality we also have an algorithm for ∧ with
the same property. We now give detailed algorithms for the remaining operators: U, and
◊I for I bounded interval. To this end we will need four basic operations on signals:
shift, pointwise maximum, pointwise minimum, and suffix supremum. All such operations
correspond to a robustness computation for simpler operators.

The shift of signal f by some constant c ≥ 0 produces a signal g such that g(t) =
f (t + c) if f is defined at t − c, −∞ otherwise. This can be achieved by shifting all
sampling points and appending a segment with value −∞. Note that the shift operation
corresponds to the quantitative semantics of ◊[a,a]. We denote its computation by g :=
COMBINE(◊[a,a], f ) in pseudo-code.

The pointwise maximum (respectively minimum) of signals f and g produces a signal
h such that h(t) =min{ f (t), g(t)} (resp. h(t) =max{ f (t), g(t)}). This corresponds to
the quantitative semantics of operator ∨ (respectively ∧). We denote its computation by
h := COMBINE(∨, f , g) (resp. h := COMBINE(∧, f , g)) in pseudo-code.

The suffix supremum of signal f is produces a signal g such that g(t) = supt ′>t f (t ′).
This can be achieved by backward induction, as follows. Assume that the temporal
domain of f is of the form T = [c, d]. We let g(d) = −∞, and g(d−) =max{ f (d), f (d−)}.
Then for s < t it holds g(s) =min{g(t), infr∈(s,t) f (r)}. Thus g can be represented using
the same time sequence as f . Its values over this time sequence are computed going
backward in time using the previous equations. Note that suffix supremum corresponds
to the quantitative semantics of ◊. We denote its computation by g := COMBINE(◊, f ) in
pseudo-code.

Temporal operators are handled by applying such operations either over the whole
input signals, or a subset thereof, possibly single linear segments. Given some signal
f we write f [t, t ′] the restriction of f to the interval [t, t ′], and similarly for temporal
domains that are open or semi-open intervals. We sometimes abuse the notation and
also write f (c) to denote a constant signal t 7→ f (c) over some temporal domain clear
from the context.

5.4.1 Timed Eventually

Let f be the robustness signal of some formula ϕ with respect to some trace w, with
(t i)i≤| f | its time sequence. Let I = [a, b] be a closed interval of R≥0 for some given
a < b; open and semi-open intervals constraint can be handled similarly. We would
like to compute h = [◊I ϕ]w, the robustness signal of ◊I ϕ with respect to w, such that
h(t) = supt ′∈t⊕I f (t ′) for all t ∈ T. Let us first assume that f is a continuous signal, and
postpone the analysis of signals with discontinuities.

As f is piecewise monotone, it is sufficient to consider candidates for the maximum
in the time sequence of f , along with t + a and t + b. Let us denotes by S the set of
sampling points of f , in symbols S = {t i : i ≤ n}. We have

sup
s∈t⊕[a,b]

f (s) =max{ f (t + a), f (t + b), max
s∈S∩(t+a,t+b)

f (s)}
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Figure 5.2: Three steps of Lemire’s algorithm: (a) The set M contains samples i1, i2,
i3, and i4; (b) New sample i5 appears at the interval upper-bound t + b, and sample i5
inserted in M , which causes i4 and then i3 to be removed; (c) The interval lower-bound
t + a reaches sample i1, and sample i1 is removed from M .

The problem of computing h is reduced to the computation of the maximum of the set
{ f (s) : s ∈ S ∩ (t + a, t + b)}, followed by a pointwise maximum with both f (t + a) and
f (t + b) where defined. On the one hand, time intervals where S ∩ (t + a, t + b) provide
the maximum are “plateau” phases, where the supremum is reached at a point in the
interior of the interval t ⊕ I and the derivative is constant. On the other hand, intervals
where t + a or t + b provide the maximum are “descending” and “ascending” phases,
where the slope follows that at some endpoint of t ⊕ I .

The signal t 7→maxs∈S∩(t+a,t+b) f (s) can be computed by a straightforward adaptation
of the running maximum filter algorithm given in [79]. This work addresses the problem
of computing, for discrete-time signals, the maximum over a shifting time window con-
sisting of k elements. Lemire’s algorithm is the first such algorithm with time complexity
linear in the length of the sequence and independent of the window size k. We generalize
this algorithm to the case of discrete-time signals with variable time-step, and in turn to
piecewise linear signals.

The main idea is to maintain, as we increase t, a set of indices M , such that for
each indice i ∈ M the corresponding value f (t i) dominates all f (t j) for j > i and t j in
t ⊕ (a, b). Formally we require that

i ∈ M iff t i ∈ t ⊕ (a, b) and ∀ j > i, if t j ∈ t ⊕ (a, b) then f (t j)< f (t i)

In particular for any given t, if M 6= ; we have f (tmin M) = max{ f (t i) : t i ∈ t + (a, b]}.
Assume M is known for a given time s, and is non-empty. We begin by finding the first
t > s such that either a new point appears at t + b, or some maximum candidate in M
disappears at t+a, or both. We update M accordingly: if tmin M = t+a we remove min M ,
the first index from M . Then if t + b = t i for a given i then we compare f (t i) with f (tk)
for k ∈ M in decreasing order of k, starting with the last candidate f (tmax M). If k ∈ M is
such that tk ≤ t i then tk is removed from M as dominated by t i, otherwise we stop. At
this point i is inserted as the new last element of M . We now have in M an ordered set
of maximum candidates in t ⊕ I; we can output f (tmin M) and repeat the procedure for
the next event. The algorithm steps are illustrated in Figure 5.4.1.

The pseudo-code of Algorithm 5.2 exposes in detail our generalization of Lemire’s
algorithm. For simplicity sake we ignore the case where M = ; (occurs if [a, b] is shorter
than the delay between two consecutive sampling points).
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Algorithm 5.2 LEMIRE( f , (t i)i≤n, a, b)
s := t0 − b, t := s, i := 0, M := {0}
while t + a < tn do

t :=min{tmin M − a, t i+1 − b}
if t = tmin M − a then

M := M \ {min M}
g(t) := f (tmin M)
s := t

end if
if t = t i+1 − b then

while f (t i+1)≥ f (tmax M) and M 6= ; do
M := M \ {max M}

end while
M := M ∪ {i + 1}
i := i + 1

end if
if s ≥ t0 then

g(s, t) := f (tmin M)
end if

end while
return g

Proposition 5.6. The time-complexity of Algorithm 5.2 is linear in |f|.

Proof. We store M as a doubly-linked queue, that we keep sorted in increasing index
order; the elements of M can be this way be accessed with cost O(1). The cost of
maintaining M becomes proportional to the number of value comparisons involved.
With the same argument as [79] we notice that on the whole run, there are | f | elements
entering M and thus | f | elements are leaving M . Each time the comparison f (t i+1− b)≥
f (tmax M) evaluates to true, an element is removed from M so there can only be | f | such
comparisons that evaluate to true. When it evaluates to false we leave the inner while
loop, hence there are at most | f | such comparisons that evaluate to false. Over the whole
execution Algorithm 5.3 uses at most 2 · | f | such value comparisons, making its execution
time linear in | f |.

We obtain the full algorithm, for piecewise linear signals, by integrating this value
with f (t+a) and f (t+ b). Now if signal f has discontinuities, we use the same principle
to compute the running maximum of the left and right limits of f that lie inside t⊕(a, b).
Let us denote g (resp. g+, g−) signal whose value at time t is determined by the maximum
of f at sampling points in S (resp. right-limits in S+, left-limits in S−) in the window
t ⊕ I . We also denote fa (respectively fb) the signal f shifted by a (respectively b). The
robustness signal h is computed as the pointwise maximum of g, g+, g−, fa, and fb. The
pseudo-code appears in Algorithm 5.3.

Lemma 5.7. The time-complexity of Algorithm 5.3 is in O(| f |).
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Algorithm 5.3 COMBINE(◊[a,b], f )
fa := COMBINE(◊[a,a], f )
h := fa

fb := COMBINE(◊[b,b], f )
h := COMBINE(∨, fb, h)
g := LEMIRE( f , (t i)i≤n, a, b)
h := COMBINE(∨, g, h)
g+ := LEMIRE( f , (t+i )i<n, a, b)
h := COMBINE(∨, g+, h)
g− := LEMIRE( f , (t−i )1≤i≤n, a, b)
h := COMBINE(∨, g−, h)
return h

Proof. Notice that the computation of signals fa, fb, g, g+, and g− use algorithms with
time-complexity linear in | f |. The computation of pointwise maximum also has time-
complexity linear in the input size, thus every signal in the algorithm has a size linear in
| f |, and there is a fixed number of signals.

5.4.2 Untimed Until

Let f = JϕKw and g = JψKw be the robustness signals of some formulas ϕ and ψ relative
to some trace w, and let (t i)i≤| f | and (t ′i)i≤|g| be their respective time sequences. We
would like to compute h = JϕUψKw, the robustness signal of ϕUψ relative to w. By
definition we have h(t) = supr∈(t,+∞)min{g(r), infu∈(t,r) f (u)}. The computation can be
done by backward induction, similarly to the case of qualitative semantics as exposed
in Section 3.2.3. In what follows we give a quantitative analogue to propositions 3.2
and 3.3.

First, we observe that following its definition, the robustness signal of an until formula
is right-continuous. We have h(t) = h(t+) for all t ∈ T \ {supT}.

Second, let s < t be two times in T, and define the signal ht(s) as follows:

ht(s) = sup
r∈(s,t]

min{g(r), inf
u∈(s,r)

f (u)}

According to general properties of sup and inf, we obtain the following inductive formula:

h(s) =max
�

ht(s),min{ inf
u∈(s,t)

f (u), f (t), h(t)}
	

Suppose that f is linear on the interval [s, t). We have two possibilities according to
whether f is decreasing or increasing on that interval. If f (s+)≥ f (t−) then infu∈(s,r) f (u) =
f (r−) = f (r) for all r ∈ (s, t). In this case, we have:

ht(s) = sup
r∈(s,t]

min{g(r), f (r)} h(s) =max
�

ht(s), min{ f (t−), f (t), h(t)}
	

Otherwise infu∈(s,r) f (u) = f (s+) = f (s) for all r ∈ (s, t). In that case, we have:

ht(s) =min{ f (s), sup
r∈(s,t]

g(r)} h(s) =max
�

ht(s), min{ f (s), f (t), h(t)}
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We let t = t i in the above, and obtain a characterization of the value of h on the
segment (t i, t i+1) as a function of s. Computation can now be expressed as operations pre-
viously discussed. The pseudo-code detailing such operations appears in Algorithm 5.4.

Algorithm 5.4 COMBINE(U, f , g)
i := | f | − 1
h(t i+1) = −∞
while i ≥ 0 do

if f (t+i )≥ f (t−i+1) then
h1 := COMBINE(◊, g(t i, t i+1))
h2 := COMBINE(∧, h1, f (t i, t i+1))
h3 :=min{ f (t−i+1), f (t i+1), h(t i+1)}
h(t i, t i+1) := COMBINE(∨, h2, h3)

else
h1 := COMBINE(∧, g(t i, t i+1), f (t i, t i+1))
h2 := COMBINE(◊, h1)
h3 :=min{ f (t i+1), h(t i+1)}
h4 := COMBINE(∧, f (t i, t i+1), h3)
h(t i, t i+1) := COMBINE(∨, h2, h4)

end if
h(t i) := h(t+i )
i := i − 1

end while
return h

Lemma 5.8. The time-complexity of Algorithm 5.4 is in O(max{| f |, |g|}).

Proof. The algorithm takes | f | steps. Each step i computes the segment of signal h over
the interval [t i, t i+1) from segments f (t i, t i+1] and g(t i, t i+1], and h(t i+1). The execution
of a single step takes time linear in the sum of the size of the input segments; the size
of inputs summed over all steps is less than 2| f |+ |g|. Thus the total execution time is
linear in max{| f |, |g|}.

5.5 Evaluation

5.5.1 Complexity

We are interested in the time complexity of the robustness computation relative to both
the trace size and the formula size. The size of a trace w is defined as |w|=

∑

q∈P∪X |qw|,
the sum of all its signals sizes. The size of a formula ϕ, denoted |ϕ|, is the number nodes
in its syntactic tree.

Theorem 5.9. For any formula ϕ and trace w, the signal JϕKw has a size in 2O(|ϕ|) · |w|

Proof. From lemmas 5.7 and 5.8, and remarks of Section 5.3 we deduce the following.
Given any signals f , g, and h such that either h : t 7→ − f (t), h : t 7→ min{ f (t), g(t)}
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or h : t 7→ supr∈t+[a,b]min{g(r), infu∈(t,r) f (u)}, there exists a constant c > 1 such that
|h| ≤ c max{| f |, |g|}. We now prove the property | JϕKw | ≤ c|ϕ| ·|w| by structural induction.
Atomic formulas have size 1, while their robustness signal has a number of sampling
points at most the size of the input trace. For the negation, we have |¬ϕ| = |ϕ| + 1
while | J¬ϕKw | = | JϕKw |, and we conclude using the inductive hypothesis. For binary
operations, consider formula γ= ϕ∧ψ or γ= ϕUψ; in either case |γ|= |ϕ|+|ψ|+1. Let
f , g and h be the robustness signals relative to w of ϕ,ψ and γ respectively. By induction
hypothesis, | f | ≤ c|ϕ| · |w|, and |g| ≤ c|ψ| · |w|. We have |h| ≤ c(c|ϕ| · |w| + c|ψ| · |w|) =
c|ϕ|+|ψ|+1 · |w|= c|γ| · |w|.

Corollary 5.10. The algorithm SIGNALS(ϕ, w) has time-complexity in 2O(|ϕ|) · |w|.

Proof. The complexity results of previous sections can be summed up by stating the
following: there exists a constant c such that for any signals f , g and any operator ¬,∧
or UI , the corresponding COMBINE algorithm takes execution time at most c(| f |+ |g|).
Now let ϕ be an arbitrary formula, and w an arbitrary trace. By Theorem 5.9, each
subformula ψ of ϕ has a robustness signal with at most c|ψ| · |w| ≤ c|ϕ| · |w| sampling
points. Thus for each subformula ψ of ϕ, algorithm SIGNALS(ψ, w) algorithm takes
execution time linear in c|ϕ| · |w|. There are exactly |ϕ| such nodes, so that the main
robustness computation of ϕ with respect to w is linear in |ϕ| · c|ϕ| · |w|, and linear in
2d|ϕ| · |w| for any d > log(c).

The complexity of robust (quantitative) monitoring, like that of classical (qualitative)
monitoring, is linear in the size of the input trace. However the exponential complexity
of robust monitoring relative to the size of the formula contrasts with that of classical
monitoring, which is only quadratic. This is explained by the fact that the size of the
satisfaction signal of some formula is at most the sum of that of its direct subformulas.
For robust monitoring, the size of the robustness signal of some formula may be greater
than the sum of that of its direct subformulas.

5.5.2 Experiments

The proposed algorithm has been implemented in C++ and interfaced with the STL parser
of Breach, a Matlab toolbox for the testing and verification of hybrid system. We computed
the robustness estimate for three formulas of size 1, 25 and 50 for random signals of
varying size. We could confirm that for each formula, the computation time is linear with
respect to the signal size, processing on average 42735, 6135, and 4081 input samples
per second respectively. We then set the signal size to 1000, and generated formulas of
varying size. For each pair of formula and signal, we computed the robust signal, and the
ratio between its size and that of the input signal. We observed a high variability of this
ratio, and could not draw definitive conclusions, other than an exponential behavior in
the height of the formula’s syntactic tree. We believe that human-written specifications
are unlikely to contain the deeply nested temporal operators that would be necessary to
yield this exponential behavior.

Next we compared the performance of our algorithm, as implemented in Breach, with
that of the DP-TaLiRo [54], based on a dynamic programming approach and implemented
in S-TaLiRo version 1.3. In particular we compared the monitoring of ◊I p and p UI q
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relative to traces of various sizes, and for different time intervals I . I . The results are
given in Table 5.1. Except for signals of small size, our algorithm as implemented in
Breach is consistently faster by several orders of magnitude.

Table 5.1: Computation time (s) of robustness estimates for eventually and until formulas;
comparison with DP-Taliro algorithms.

DP-Taliro Breach

|w| 102 103 104 105 102 103 104 105

◊[1,2] 0.00109 0.00278 0.176 16.6 0.00312 0.00302 0.004 0.0193
◊[1,11] 0.00068 0.00304 0.212 20.4 0.00286 0.00262 0.00391 0.0173
◊[1,21] 0.00071 0.00334 0.253 24.3 0.00268 0.00269 0.00412 0.0185
◊[1,31] 0.00070 0.0038 0.278 27.3 0.00302 0.00281 0.00409 0.0208

U[1,2] 0.523 4.72 46.8 486 0.00577 0.00766 0.0268 0.228
U[1,11] 0.482 4.55 47.1 493 0.00567 0.00743 0.0269 0.223
U[1,21] 0.468 4.59 46.2 499 0.00545 0.00722 0.0268 0.229
U[1,31] 0.462 4.7 46.7 505 0.00567 0.0073 0.0274 0.222

One partial explanation could be the fact that in the framework of TaLiRo, the robust
satisfaction of a predicate is obtained through the computation of a distance function,
which is done by the monitoring algorithm. This may lead to an additional cost [54],
whereas in our case, that computation is separated from the monitoring. However, all
the predicates in our experiments are such that the distance function should be trivial
to compute, so this alone cannot account for the difference in performance. Also, our
results confirmed that the computation time for bounded time operators does not depend
on the size of the time interval, as in [79]. This dramatically improves upon the observed
complexity of the DP-TaLiRo algorithm.
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Regular Expressions Monitoring

This chapter solves the problem of monitoring Timed Regular Expressions (TRE). These
expressions are formed by adding to the syntax of classical regular expressions an operator
that constrains the duration of subexpressions. This extensions enables specifying mixed-
signal behaviors in a natural way, particularly those where timing aspects interact with
other non-trivial sequential conditions. In the context of regular expressions, the notion
of satisfaction signal used for temporal logic is not suitable for an inductive monitoring
procedure. Semantics of regular expressions are formulated in terms of trace segments,
which are represented for a given trace by pairs of start and end times. Instead of simple
membership, we solve the more general problem of pattern matching, which consists
in computing the entire set of matches (the match set) of a given expression on some
trace. Seeing segments as points in a two dimensional space, we show that the match
set admits a finite decomposition into simple convex polyhedra using vertical, horizontal
and diagonal constraints (elsewhere called zones). The performance of the resulting TRE
monitoring procedure appears comparable to that of MTL.

6.1 Introduction

6.1.1 Motivation

Timed Regular Expressions were introduced in [24, 25] as a language (and theoretical
tool) for the specification (and study) of continuous-time behaviors. Their expressiveness
matches that of Timed Automata [17], if renaming of action symbols is authorized. Thus
TRE provide a strong theoretical basis for the specification of continuous-time behaviors.
Note that TRE contain classical regular expressions, and thus enable the specification of
modulo counting properties, which cannot be expressed using temporal logic unless one
resorts to some form of second order quantification.

A practical advantage of using regular expressions instead of temporal logic, is found
in the ease with which they enable to describe behaviors with a combination of timing
and sequential aspects. Consider the property, according to which p holds for some time
in I , followed by q holding for some time in J . It can be specified with the MTL formula
ϕ = p UI(q UJ >) and the TRE ρ = 〈p〉I · 〈q〉J . Imagine that we aim to further specify

67
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that after this sequence, proposition r should also be holding for some time in interval
K . To achieve this with MTL, we must write ϕ′ = p UI(q UJ(r UK >)). Note that operator
until is not associative, and in particular ϕ is not a subformula of ϕ′. Using a TRE, we
can write ρ′ = 〈p〉I · 〈q〉J · 〈r〉K = ρ · 〈r〉K , which bears no ambiguity, as concatenation
is associative. We can also place further constraints on the duration of subparts of the
sequence, with for example 〈〈p〉I · 〈q〉J〉H · 〈r〉K . Properties of this kind, with constraints
ranging over several events or actions, cannot in general be expressed using MTL [32].

6.1.2 Our Approach

The algorithm we propose to monitor TRE follows a similar principle to the monitoring of
MTL by interval marking. It proceeds by computing recursively the satisfaction of direct
subexpressions and, given some algorithm for each operator, can deduce the satisfaction
of any expression. Satisfaction sets however are not an appropriate representation for
the purpose of monitoring regular expressions.

Fix the temporal domain T = [0, d]. Define for argument’s sake the satisfaction set
of some expression ϕ relative to w, as the set of times t such that (w, t, d) |≡ ϕ. Let
w be a trace with Boolean variable p such that pw = [0, c) for some c with 0 < c < d,
and consider the expressions ϕ = p · ¬p and ψ = p · (ε ∨ ¬p). The satisfaction sets of
expressions ϕ and ψ are both equal to [0, c). However the satisfaction set of ϕ · ϕ is
empty, while that of ψ ·ψ is equal to [0, c). Hence that notion of satisfaction set is not
sufficient to decide satisfaction of TRE inductively: it does not distinguish ϕ from ψ, yet
it distinguishes ϕ ·ϕ from ψ ·ψ.

For some expression ϕ, we propose instead to explore the set of pairs (t, t ′) such that
the segment of the trace under consideration matches ϕ between t and t ′. We call this
subset of T2 the match set of ϕ. Note that the match set is potentially uncountable, as
the temporal domain is an interval of the reals. We show that the match set of some
TRE can always be decomposed into zones, simple convex sets already known in timed
automata formal verification [16]. We observe that every regular operation corresponds
to a simple operation on match sets, and in particular timing operators 〈 〉I specific to
TRE correspond to an intersection with a single diagonal zone. The computation of
match sets then proceeds by structural induction as with MTL for satisfaction sets. Using
this two-dimensional representation, the cost of certain binary regular operations like
concatenation becomes quadratic, resulting in a potentially exponential complexity in
the length of the trace. Experiments seem to indicate that a suitable ordering of zones
prevents such behaviors from occurring in practice.

In order to solve the membership problem, that is to decide whether w |≡ ϕ defined as
(w, 0, d) |≡ ϕ, we indeed solve the pattern matching problem, that is to find all segments
(t, t ′) such that (w, t, t ′) |≡ ϕ. An interesting application of our algorithms is the moni-
toring of timed assertions in which TRE ρ can appear in temporal formulas ϕ via suffix
implication ρ ◦→ϕ. We can combine our pattern matching and temporal monitoring
algorithms to solve this problem. This demonstrates the feasibility of providing timed
operators in digital assertions, interpreted in continuous-time.
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6.1.3 Related Work

Monitoring procedures for temporal logic formulas are well-studied and have been ex-
tended successfully to continuous-time with STL [83, 86] notably. An extension of STL to
freeze quantification is defined in [43]; semantic definitions of this extension require an
additional time parameter. The set of time pairs that satisfy such a formula is computed
using a two-dimensional representation akin to ours, but which makes use of a decom-
position into arbitrary polyhedra. The work of [12] proposes an application of TRE to
mixed-signal specification, with the notion of feature-indented assertions, in which no
Kleene star may be used and all duration constraints apply to atomic expressions. An
interval-based algorithm for monitoring such expressions is presented there. Standard
assertion languages used in the semi-conductor industry such as PSL [48, 38] and SVA
[113, 106] combine temporal logic with regular expressions. We extend monitoring
procedures toward timed extensions of such specification languages, similar to that of
[63].

Pattern matching is a fundamental operation in searching over texts and elsewhere.
The basic string matching algorithms for single words [71, 34] as well as specialized data
structures such as suffix trees [116] and later advancements can be found in [107, 40].
Regular expressions variants are implemented in many software tools ranging from the
grep [109] family to modern programming languages, notably Perl and Python. Besides
texts, pattern matching has important applications in Biology [14] and in database query-
ing, especially temporal databases [55]. A straightforward application of the classical
translations of regular expressions to automata can be used to detect whether the prefix
of a string matches the pattern. The classical algorithm of Thompson [109] adapts the
automaton construction for pattern matching but still, in the discrete case, finding all
matches of an expression in a string is considered a very difficult problem and is not part
of the mainstream; some exceptions are [100] and [78]. One reason might be that with-
out a symbolic representation, which is necessary for the timed case, the set of matches
may be prohibitively large to represent.

6.2 Timed Regular Expressions

6.2.1 Syntax and Semantics

Let us recall and specialize the definitions of Chapter 2 as follows. We fix a temporal
domain T = [0, d] and a set of propositions P. We consider atomic expressions of the
form p, standing for a trace segment such that proposition p holds everywhere. Timing
constraints are assumed to have finite resolution; for the sake of simplicity we assume
that all time constants in the specification are given as integers (rationals can be handled
by scaling). We say that some an interval I of R≥0 is integer-bounded when it verifies
inf I , sup I ∈ N. The syntax of Timed Regular Expressions is given by the following
grammar:

ϕ ::= p | ϕ ∨ϕ | ϕ ∧ϕ | ϕ ·ϕ | ϕ∗ | 〈ϕ〉I
where p is a proposition in P, and I is an integer-bounded interval.
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t
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p ∧ q ¬q q ¬p

¬q q ¬pp ∧ q

Figure 6.1: Two matches of expression 〈p ∧ q · ¬q · q · p〉[5,10] on a given simulation trace.

A trace w is a valuation of propositions in p ∈ P as Boolean signals pw over the
temporal domain T. In the context of some trace w, atomic expressions p are interpreted
as predicates p

w
over T2, representing segments of w that match p. Expression p is

matched by segments such that p holds continuously in the corresponding open interval
of time. We let (t, t ′) ∈ p

w
if and only if pw[t ′′] = 1 for all t ∈ (t, t ′).

We say that trace w matches expression ϕ between times t ≤ t ′ in T, denoted
(w, t, t ′) |≡ ϕ, when the following inductive definitions hold:

(w, t, t ′) |≡ ε iff t ′ = t
(w, t, t ′) |≡ p iff (t, t ′) ∈ p

w

(w, t, t ′) |≡ ϕ1 ∨ϕ2 iff (w, t, t ′) |≡ ϕ1 or (w, t, t ′) |≡ ϕ2

(w, t, t ′) |≡ ϕ1 ∧ϕ2 iff (w, t, t ′) |≡ ϕ1 and (w, t, t ′) |≡ ϕ2

(w, t, t ′) |≡ ϕ1 ·ϕ2 iff ∃t ′′, (w, t, t ′′) |≡ ϕ1 and (w, t ′′, t ′) |≡ ϕ2

(w, t, t ′) |≡ ϕ∗ iff (w, t, t ′) |≡ ε or (w, t, t ′) |≡ ϕ ·ϕ∗

(w, t, t ′) |≡ 〈ϕ〉I iff t ′ − t ∈ I and (w, t, t ′) |≡ ϕ

Technically speaking, |≡ is the least such relation, see Footnote 6 of Section 2.3.2. We say
that w matches ϕ, and write w |≡ ϕ when (w, 0, d) |≡ ϕ given T = [0, d] the temporal
domain of w. An example of expression and some of its matches on a given signal appear
in Figure 6.1.

6.2.2 Match Set

Strictly speaking the monitoring problem for TRE asks, for a given trace w and expression
ϕ, whether w |≡ ϕ. In order to reason inductively about the validity of expression, the
suitable notion is that of match set, defined as follows.

Definition 6.1. The match set of ϕ according to w, denoted [ϕ]w is the set of segments of
w that match ϕ:

[ϕ]w = {(t, t ′) ∈ T2 : (w, t, t ′) |≡ ϕ}
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To compute the match set of some expression ϕ, it is sufficient to simply know the
match sets of direct subexpressions of ϕ. Clearly knowing the match set of ϕ enables to
decide its satisfaction by some trace w, as by definition w |≡ ϕ if and only if (0, d) ∈ [ϕ]w.
In the course of solving the simple monitoring problem for TRE, that is deciding if w |≡ ϕ
for some trace w and expression ϕ, we will solve as a by-product a more general problem,
that of pattern matching. The pattern matching problem aims at finding all the matches
of expression ϕ on w, that is the entire match set [ϕ]w.

6.3 Zone Marking

Central to our approach is a decomposition of the match set into a finite union of zones.
We define zones as a class of convex polyhedra given by constraints of the form t i ./ ai,
t i ./ bi, and t i − t j ./ ci, j with ./ ∈ {<,≤,≥,>}. By defining 0 as a time constant, zones
can be viewed as a special case of formulas in the logical theory of difference constraint,
where all atomic formulas are of the form t i − t j ./ ci, j. Such a theory admits quantifier
elimination [72].

Zones were introduced (and are still used extensively) to represent real-time clock
values in the analysis of timed automata [16]. In the monitoring context we use them
to represent absolute time values in a match set. On the one hand diagonal constraints
arise directly from timing constraint in the specification, and can be taken as integers
(modulo scaling). On the other hand orthogonal constraints may have non-integral parts
inherited from the time stamps of events in w.

We denote by π1(Z), π2(Z) and π2,1(Z) the orthogonal projections of a given zone Z
on horizontal, vertical, and diagonal axes, respectively. These are intervals with respective
endpoints written π−1 (Z), π

+
1 (Z), π

−
2 (Z), π

+
2 (Z), π

−
2,1(Z), and π+2,1(Z). Typically we have

(t, t ′) ∈ Z if and only if







π−1 (Z)≤ t ≤ π+1 (Z)
π−2 (Z)≤ t ′ ≤ π+2 (Z)
π−2,1(Z)≤ t ′ − t ≤ π+2,1(Z)

We also consider zones that are open or part-open with the same canonical representation
yet featuring strict inequalities.1

We now prove the central result of this chapter, according to which the match set
can be represented as a finite union of zones. Since operations ∧, 〈 〉I and · distribute
over ∨, similarly to the temporal logic case, it is sufficient to prove closure of zones
under their associated match set operations, and the closure of unions of zones will
immediately follow. The closure is straightforward to obtain, except in the case of starred
expressions ϕ∗ where we show that the match set of ϕ∗ is computed in terms of a finite
number of iterations of ϕ. The convergence to a fixed point

⋃k+1
n=0 [ϕ

n]w =
⋃k

n=0 [ϕ
n]w

can be intuitively understood as follows. There are finitely many time constants in the
trace and expression (and finitely many combinations thereof), thus there are finitely
many time constants in the zone constraints encountered while computing the closure.
However a bound obtained by an argument along these lines would be overly pessimistic.

1This can be prevented by slight modifications of our definitions, if only closed intervals are allowed
in timing constraints. However strict constraints do not create a particular difficulty.
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It may only be used to show that the complexity relative to the expression is linear. What
interests us most is the behavior of the algorithm relative to the length of the trace. In
what follows we will use other proofs to compute more relevant bounds on the number
of iterations in the computation of the match set of starred expressions.

Theorem 6.2 (Match Set Decomposition). Given a finite variability signal w and a TRE
ϕ, the set [ϕ]w is a finite union of zones.

For the empty word, notice that the match set of ε is the identity relation Id= {(t, t ′) ∈
T2 : t = t ′} over T. Moreover this relation is a zone, hence the “decomposition” of ε is
given by

[ε]w = Id

In the case of atomic expressions p, the match set is a disjoint union of triangles touching
the diagonal, see Figure 6.2-(a). Assuming rising edges and falling edges of p occur at
times (ri)i≤n and (si)i≤n respectively, we have

[p]w =
n
⋃

i=0

{(t, t ′) : ri ≤ t < t ′ ≤ si}

For Boolean operations, the match sets for disjunction and conjunction satisfy

[ϕ ∨ψ]w = [ϕ]w ∪ [ψ]w [ϕ ∧ψ]w = [ϕ]w ∩ [ψ]w
and finite unions of zones are closed under Boolean operations. The match set of an
expression ϕ restricted in its duration to interval I is obtained as follows.

[〈ϕ〉I]w = [ϕ]w ∩ {(t, t ′) ∈ T2 : t ′ − t ∈ I}

This is just an intersection with a zone and the result remains a union of zones, see
Figure 6.2-(b).

In the case of concatenation, thanks to our semantics formulation we can see directly
that the match set for concatenation is a relational composition of the corresponding
match sets. Let R, S ⊆ T be two binary relations over T, also known as predicates over
T2 elsewhere in the text. We denote by R # S = {(t, t ′) : ∃t ′′, (t, t ′′) ∈ R and (t ′′, t ′) ∈ S}
the composition of binary relations R and S. Following definitions it holds

[ϕ ·ψ]w = [ϕ]w # [ψ]w

as illustrated in Figure 6.3-(a). It turns out that the zones are well behaved relative to
composition, which is one of the two key lemmas to get our result:

Lemma 6.3. The composition of two zones is a zone.

Proof. Let α[t, t ′] and β[t, t ′] be conjunctions of difference constraints defining zones
X and Y respectively. From the definition or relational composition, the set Z = X # Y
is characterized by the formula γ = ∃t ′′,α[t, t ′′] ∧ β[t ′′, t ′]. Eliminating t ′′ from γ
using the Fourier-Motzkin procedure we get an equivalent, quantifier-free formula. The
elimination proceeds by comparing the lower bounds and upper bounds on variable t ′′,
having rewritten t ′′ − t ./ c as t ′′ ./ c + t and symmetrically. The resulting constraints
can be written back in the form t ./ a, t ′ ./ b, and t ′ − t ./ c. Thus γ is equivalent to a
conjunction of difference constraints, hence Z is a zone.
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Figure 6.2: (a) The match set of a signal with respect to an atomic expression p; (b) The
effect of time restriction with 〈p〉[2,4]⇔ p ∧ 〈>〉[2,4].

Geometrically speaking, X # Y can be seen as inverse-projecting X and Y into a 3-
dimensional space with axes labeled by t, t ′ and t ′′, intersecting these two sets and
projecting back on the plane t, t ′. Another intuition in dimension 2 is given Figure 6.3-
(b).

The next lemma that we will prove states that it is sufficient to consider the relation
of finitely many zones to obtain the match set of a starred expression. First we present a
simpler but more direct argument. This argument uses the finite variability of the trace
to bound the number of iterations. Essentially we prove that the match set of the star
can be computed by a finite number of concatenations.

Let us say that an open interval (t, t ′) is unitary with respect to w if t ′ − t < 1 and
w is constant throughout (t, t ′). We recall that all intervals in expressions have integer
bounds; in particular 1 is the smallest non-zero duration constant. The following property
of unitary intervals can be proved straightforwardly by structural induction on ϕ.

Lemma 6.4. Let (t, t ′) be a unitary interval with respect to w. For all intervals (s, s′) ⊆ (t, t ′)
we have (w, s, s′) |≡ ϕ if and only if (w, t, t ′) |≡ ϕ.

Let ‖w‖ be the least k such that w can be covered by k unitary intervals, that is, there
exists a sequence of intervals (0, t1), (t1, t2), . . . , (tk−1, d), all unitary with respect to w. A
key property of k = ‖w‖ is the following.

Lemma 6.5. For any n> 2k+ 1, if (w, t, t ′) |≡ ϕn then (w, t, t ′) |≡ ϕn−1.
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Figure 6.3: (a) Match sets X , Y and Z of expressions ϕ = 〈p〉[2,4], ψ = 〈q〉[1,2] and
their concatenation ϕ ·ψ, respectively; (b) Every match (t, t ′) ∈ Z corresponds to a path
from t on the abscissa to t ′ on the ordinate via a match (t, t ′′) ∈ X , the point t ′′ on the
diagonal, and a match (t ′′, t ′) ∈ Y .

Proof. Let (0, t1), (t1, t2), . . . , (tk−1, d) be a sequence of unitary intervals with respect to
w. If (w, t, t ′) |≡ ϕn then there exists a sequence of time points t = s0 ≤ s1 ≤ . . .≤ sn = t ′

such that for i = 1..n
(w, si−1, si) |≡ ϕ (6.1)

When n> 2k+1, by the pigeonhole principle, among time points r0, . . . , rn there are three
consecutive points, denoted by si−1, si, si+1, within the same unitary interval (t j−1, t j) of
w. By Lemma 6.4 it holds that (w, si−1, si+1) |≡ ϕ, thus the time point si can be excluded
from s0, . . . , sn still preserving (6.1). Hence (w, t, t ′) |≡ ϕn−1.

Corollary 6.6. For any expression ϕ and any signal w with ‖w‖= k it holds that [ϕ∗]w =
⋃2k+1

n=1 [ϕ
n]w.

We have demonstrated our second key lemma, addressing the inductive step for
Kleene star. This concludes the proof of Theorem 6.2.
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6.4 Algorithms

6.4.1 Zones Computation

A procedure for computing match-sets can be readily derived from the proof of The-
orem 6.2. This procedure, sketched in Algorithm 6.1, recursively calls a subroutine
COMBINE that takes as arguments the topmost operator of the expression • among ·, ∨,
∧, ∗, or 〈 〉I for some I , along with the match sets of the subexpressions and applies the
operation corresponding to the specific operator •.

Algorithm 6.1 ZONES(ϕ, w)
select ϕ
case ε, p:
Zϕ := ATOM(ϕ, w)

case • ψ:
Zψ := ZONES(ψ, w)
Zϕ := COMBINE(•,Zψ)

case ψ1 •ψ2:
Zψ1

:= ZONES(ψ1, w)
Zψ2

:= ZONES(ψ2, w)
Zϕ := COMBINE(•,Zψ1

,Zψ2
)

end select
return Zϕ

Our algorithm intensively performs various binary operations over sets of zones by
in turn applying this operation to every pair of zones that can be formed from those
two sets. In addition to the operations defined in the expressions, in various stages we
eliminate redundancy by checking pairwise inclusion of zones covering a match-set. This
kind of filtering consists in removing from Z all zones strictly included in other zones in
Z . As the purpose of Z is to cover some match set taking its union, this operation has
no effect on the result but it is an important ingredient of an efficient implementation.
This filtering is systematically applied when merging two sets of zones; accordingly we
define the pairwise union ä by letting

Z äZ ′ = {Z ∈ Z : ∀Z ′ ∈ Z ′, Z 6⊂ Z ′} ∪ {Z ′ ∈ Z ′ : ∀Z ∈ Z , Z ′ 6⊂ Z}

We also define the pairwise inclusion â by

Z âZ ′ if and only if ∀Z ∈ Z ,∃Z ′ ∈ Z ′, Z ⊆ Z ′

That is Z â Z ′ when each zone in Z is included in a zone of Z ′. Note that Z â Z ′ if
and only if Z äZ ′ =Z ′. 2

A naive implementation of a binary operation on sets of zones with n elements would
need O(n2) operations. In practice, many of these operations yield an empty set and

2In itself, filtering Z could be defined as taking the smallest subset of Z that pairwise contains Z .
Note that this does not yield a minimal representation of a finite union of zones. For this one would need to
consider inclusion of a union of zones in a zone and vice-versa, which are costly combinatorial operations.
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can be avoided by exploiting inherent ordering between zones. In particular we can
implement this idea through the plane sweep algorithm [97], used as is for intersection,
and specialized for concatenation.

Algorithm 6.2 COMBINE(∧,X ,Y )
Require: X ,Y sorted by π−1
Ensure: Z sorted by π−1
X ′ := Y ′ :=Z := ;
while X 6= ; ∧Y 6= ; do

X := first(X )
Y := first(Y )
if π−1 (X )< π

−
1 (Y ) then

X :=X \ {X }
X ′ :=X ′ ∪ {X }
Y ′ := {Y ′ ∈ Y ′ : π+1 (Y

′)≥ π−1 (X )}
for all Y ∈ Y ′ do

Z := X ∩ Y
Z :=Z ä {Z}

end for
else
Y := Y \ {Y }
Y ′ := Y ′ ∪ {Y }
X ′ := {X ∈ X ′ : π+1 (X )≥ π

−
1 (Y )}

for all X ∈ X ′ do
Z := X ∩ Y
Z :=Z ä {Z}

end for
end if

end while
return Z

For intersection, Algorithm 6.2 keeps X and Y sorted according toπ−1 . It maintains two
active sets X ′ and Y ′ which contain candidates for intersection. Elements are successively
moved to the active sets and removed from the inactive sets when it is clear they will
not participate in further (non-empty) intersections. This happens for X ∈ X ′ such that
π+1 (X )< π

−
1 (Y ) for every Y ∈ Y ′ and vice versa. We avoiding the quadratic blow up by

considering candidates for inclusion in an ordered manner. For concatenation, this is
achieved by computing a pointwise operation with Z = {X # Y : X ∈ X , Y ∈ Y }, observe
that X # Y 6= ; if and only if π2(X )∩π1(Y ) 6= ;. Hence we can apply an algorithm similar
to Algorithm 6.2, where X is this time sorted according to π−2 and Y is sorted according
to π−1 .

For the star operation, we tried two different approaches. In the incremental approach
we compose the input set X with an accumulating set Y initialized to X , computing
the sequence ∪X , (∪X )2, (∪X )3, . . . , (∪X )n. In the squaring approach we compose the
accumulating set Y with itself, computing the sequence ∪X , (∪X )2, (∪X )4, . . . , (∪X )2k

.
The squaring approach is more efficient for sets of zones that converge slowly to a fixpoint.
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Algorithm 6.3 depicts our implementation of this approach. In order not to compose
the same sequence of zones twice, we maintain two sets of zones Yk and Zk such that

at the end of iteration k we have ∪Yk = (∪X )2
k

and ∪Zk =
⋃2k−1

n=0 (∪X )
n. According to

Corollary 6.6, we may stop at the first k such that 2k ≥ 2·‖w‖+1; however under realistic
assumptions a fixpoint Yk can be reached in much fewer iterations. For performance
reasons we do not check the inclusion ∪Yk ⊆ ∪Zk, but use the pairwise inclusion test
Yk âZk. In the sequel we give an upper-bound on the number of iterations k until this
condition is met.

Algorithm 6.3 COMBINE(∗,X )
Z := {Id}
Y :=X
while Y 6âZ do
Z :=Z ä COMBINE(·,Z ,Y )
Y := COMBINE(·,Y ,Y )

end while
return Z

6.4.2 A Bound for the Kleene Star

The argument of Section 6.3 is based on properties of the expression relative to the length
of the trace, and not on the match set ∪Z over which the reflexive-transitive closure
is computed. Here we provide an alternative upper bound, based on properties of the
match set decomposition. The intuition behind this argument can be given as follows.

On the one hand, when zones in the set Z have a positive minimal duration, there
is an obvious bound on the number of zones that can appear in a sequence whose
composition is not empty. In general the composition of two zones has a minimum
duration which is at least the sum of that of both zones: 〈p〉[a,∞) ·〈q〉[b,∞)⇒ 〈p ·q〉[a+b,∞).
The temporal domain is bounded; however we place no restriction on the minimal
duration of atomic predicates so the argument is void. On the other hand, triangular
zones resulting from atomic expressions are stable under composition. In the absence
of singular discontinuities, p⇔ p · p, and upper diagonal constraints over such a zone
will be lifted when star is applied: (〈p〉[0,a])∗⇔ ε∨ p for a > 0. These observations are
still not sufficient, we use a more detailed argument. Composing longer sequences of
zones, the overall duration of matches in the resulting zone will tend to increase. Indeed
we show that every repetition of some zone in a sequence causes the maximal duration
to increase of at least one time unit (assuming integer diagonal bounds). There will
be a certain sequence length above which the maximal duration is that of the temporal
domain, and concatenating one more zone can only make the resulting composition a
smaller set of matches. The computation can stop.

Fix Z a set of zones with |Z | elements. Let c = maxZ ,Z ′∈Z π
+
2 (Z

′) − π−1 (Z) be the
time-span of Z . We show that computing the transitive-reflexive closure of Z using
Algorithm 6.3, the pairwise inclusion test is met before blog (|Z |+ c)c+ 1 iterations. A
sequence of zones Z1, . . . , Zn is said to be redundant if there exists 1≤ i < j ≤ n such that
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Z1 # . . . # Z j ⊆ Z1 # . . . # Zi. Notice that the star algorithm eliminates redundant sequences,
since for any such Z1, . . . , Zn we have Z1 # . . . # Zn ⊆ Z1 # . . . # Zi # Z j+1 # . . . # Zn by transitivity.
We first see that in a non-redundant sequence the maximal duration never decreases:

Lemma 6.7. For any X , Y such that X # Y * X we have π+2,1(X # Y )≥ π+2,1(X ).

Proof. The propagation of difference constraints gives us π+2,1(X # Y ) = min{π+2,1(X ) +
π+2,1(Y ),π

+
2 (Y )−π

−
1 (X )}. Supposeπ+2,1(X #Y )< π+2,1(X ) and show X #Y ⊆ X . First note that

π1(X #Y ) ⊆ π1(X ). By hypothesis π+2 (Y )−π
−
1 (X )< π

+
2,1(X ), yet π+2,1(X )≤ π

+
2 (Y )−π

−
1 (X )

so that π+2 (Y ) < π
+
2 (X ). This implies that π2(X # Y ) ⊆ π2(X ). Finally the hypothesis

π+2,1(X # Y )< π+2,1(X ) gives us π2,1(X # Y ) ⊆ π2,1(X ).

Let us call repeated a position i in the sequence X , . . . , Xn such that there exists j > i
with X i = X j. A zone that has the ability to produce a non-redundant sequence when
repeated, induces a simple sum on the maximal duration:

Lemma 6.8. For any X , Y such that there exists Z with X # Y # Z # Y * X # Y we have
π+2,1(X # Y ) = π+2,1(X ) +π

+
2,1(Y ).

Proof. Suppose π+2,1(X #Y )< π+2,1(X )+π
+
2,1(Y ), and show that X #Y # Z #Y ⊆ X #Y for any

zone Z . Similarly to the proof of Lemma 6.7 it is sufficient to show that π+2 and π+2,1 do
not increase. On the one hand π+2 (X # Y # Z # Y )≤ π+2 (Y ) = π

+
2 (X # Y ), and on the other

hand π+2,1(X # Y # Z # Y )≤ π+2 (Y )−π
−
1 (X ) = π

+
2,1(X # Y ).

Remark 6.1. Following our assumption that all timing intervals in expressions have integer
bounds, we may assume that in zones for which the maximal duration is less than 1, the
upper diagonal constraint is always redundant (consequence of other constraints). By a
straightforward induction on the expression, it can be shown that a zone Z ′ produced by
our algorithms and such that δ+(Z ′) < 1 always verifies Z ′ = π1(Z ′)×π2(Z ′) ∩ {(t, t ′) :
t ′ − t > 0}. Thus if such a zone Z ′ was repeated it would make the corresponding sequence
redundant; under the conditions of Lemma 6.8 we indeed have δ+(Z # Z ′)≥ δ+(Z) + 1.

Theorem 6.9. Algorithm 6.3 stops within blog (|Z |+ c)c+ 1 iterations of its while loop.

Proof. We first show that any non-redundant sequence of zones in Z with m repetitions
has a duration of at least m time units. Fix Z1, . . . , Zn a sequence of zones of Z with m
repetitions, and show π+2,1(Z1 # . . . # Zn) ≥ m. Let i be a position in the sequence. If Zi

is repeated, there exists j > i with Zi = Z j. Factoring the composition of Z1, . . . , Z j into
(Z1 #. . .#Zi−1)#Zi #(Zi+1 #. . .#Z j−1)#Z j we see by Lemma 6.8 that π+2,1(Z1 #. . .#Zi) = π+2,1(Z1 #
. . .#Zi−1)+π+2,1(Zi). Following Remark 6.1 it holds π+2,1(Z1 #. . .#Zi)≥ π+2,1(Z1 #. . .#Zi−1)+1,
the maximal duration increases by 1 or more. Else Zi is not repeated and by Lemma 6.7
we ensure π+2,1(Z1 # . . . # Zi)≥ π+2,1(Z1 # . . . # Zi−1), the maximal duration does not decrease.
With m repeated zones, the sequence Z1, . . . , Zn has maximal duration of at least m.

Now suppose that the algorithm reaches iteration k = blog (|Z |+ c)c+ 1 and does
not stop. There exists a zone Z in Zk and a non-redundant sequence Z1, . . . , Zn such that
Z = Z1 # . . . # Zn for some n with 2n+1 > k ≥ 2n. Such a sequence has at least n − |Z |
repeated zones, and maximal duration π+2,1(Z1 # . . . # Zn)≤ c. Hence n−|Z | ≤ c, giving us
|Z |+ c− |Z |< c. Contradiction! Thus the algorithm stops at iteration blog (|Z |+ c)c+1
or earlier.
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6.5 Integration with Temporal Logic

We defined the membership problem as that of checking whether w |≡ ϕ, and the pattern
matching problem as that of finding all segments (t, t ′) such that (w, t, t ′) |≡ ϕ. Clearly
pattern matching algorithms as described can readily be used for monitoring of TRE
defined as a membership problem. For example we can specify with expression ϕ as
follows that the trace should begin by p holding for 3 time units, followed by q switching
from false to true with period between 4 and 5 for an even number of times, and finish
with r holding for 2 time units:

〈p〉[3,3] · (〈¬q · q〉[4,5])
2∗ · 〈p〉[2,2]

Monitoring this property consists in deciding w |≡ ϕ, equivalently if (0, d) ∈ [ϕ]w where
d = supT. In this setting, the knowledge of the entire match set of ϕ is superflous.

Not all temporal behaviors however can be easily specified in this fashion. Some
behaviors are better described using invariants or reactive properties, as with temporal
logic. Consider the simple case of the safety property according to which p should
not hold continuously for more than 2 time units. This property can be written as the
assertion

ψ= ¬(> · 〈p〉(2,∞) · >)

In its TRE form this property is more complicated to express, with

ψ′ = (¬p ∨ ε) · (〈p〉[0,2] · ¬p)∗ · (〈p〉[0,2] ∨ ε)

Complex assertions cannot always be expressed without resorting to negation or temporal
operators.3

Temporal operators enable specifying the intent of the regular expression. For ex-
ample, a safety property should be monitored according to the semantics of a temporal
always operator. This feature is available in assertion languages, where a regular expres-
sion may be evaluated in the context of an arbitrary temporal logic formula as sketched
in Chapter 2. A simple way to add this kind of functionality is to consider the oper-
ator suffix implication. This operator, denoted ◦→, is defined as through abbreviation
ρ ◦→ϕ = ¬(ρ ◦¬ϕ), where ◦ denotes the suffix conjunction operator. In turn that oper-
ator has semantics such that (w, t) |= ρ ◦ϕ if and only if there exists t ′, (w, t, t ′) |≡ ρ
and (w, t ′) |= ϕ. The form “ρ ◦” seen as a prefix operator4 can be handled via a simple
additional case in the setting of our monitoring procedure of Chapter 3.

Let us define timed assertions, with syntax given by the following grammar:

ϕ ::=> | p | ¬ϕ | ϕ ∨ϕ | ϕUϕ | ρ ◦ϕ

where p is a proposition in P, and ρ is a TRE using propositions in P. Semantics are de-
fined as previously. The timed eventually operator can be obtained through the following
abbreviation: ◊I ϕ = 〈ε∨>〉I ◦ϕ. Adding timed until operator to such assertions does

3Negation could be introduced as a regular expression primitive. However looking for the absence of a
match requires to complement a match set; this may be expensive to compute.

4This operator was first introduced in dynamic logic [58].
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Algorithm 6.4 INTERVALS(ϕ, w)
select ϕ
. . .
case ρ ◦ψ:
Iψ := INTERVALS(ψ, w)
Zρ := ZONES(ρ, w)
Iϕ := COMBINE(◦,Zρ,Iψ)

end select
return Iϕ

not increase their expressiveness, as this operator may be obtained using the until rewrite
rule of Proposition 3.1.

For the monitoring of timed assertions, we proceed as follows. We first extend the
composition operation # to accept predicates in its right-hand argument. For an arbitrary
relation R and predicate P, let R # P = {t ∈ T : ∃t ′, (t, t ′) ∈ R and t ′ ∈ P}.

Proposition 6.10. For any formula ψ, expression ρ, and trace w we have [ρ ◦ψ]w =
[ρ]w # [ψ]w.

As we have seen in Lemma 6.3, zones are closed under composition. Notice that an
interval is a one-dimensional zone. Suffix conjunction commutes with disjunction, so that
it can be done for all combinations of zone in [ρ]w and interval in [ϕ]w. The temporal
logic monitoring procedure of Chapter 3 is adapted to timed assertions by adding a single
inductive case as appears in Algorithm 6.4. The implementation of COMBINE(Zρ,Iψ)
does not pose particular difficulty; it proceeds elementwise in an ordered fashion and
may use standard zone algorithms to perform intersection and projection.

6.6 Evaluation

We benchmark our algorithms on the following example, of intermediate complexity. We
keep expression ϕ fixed while changing the signal characteristics. Our traces define two
boolean signals p and q. We define an expression which is satisfied when the two signals
oscillate rapidly together for some amount of time:

ϕ = 〈(〈p · ¬p〉[0,10])
∗ ∧ (〈q · ¬q〉[0,10])

∗〉[80,∞]

We then generate input signals with n segments, where segments have a length 400
time units. For each segment, we draw a time sequence of switching points using an
exponential distribution with expected delay 1

v where the random variable v controls
the expected variability. This ensures that there tends to be less switching at the end of
each segment, favoring the stabilization case. We monitor the expression ϕ on signals
of different length (number of segments n), and variability (parameter v). The results
are depicted in Table 6.1. We also report the number switching points |w| in the trace w
along with the number of zones found |Zϕ|. These results are consistent with simpler
examples, indicating that one can monitor complex expressions without facing a blow-up
in computation time.
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Table 6.1: Computation time (s) as a function of expected variability v and length n
(number of segments). Size of the trace (actual number of events) is shown as |w|, and
number of zones as |Zϕ|.

v n |w| |Zϕ| time
0.025 100 1893 0 0.08
0.025 200 3825 0 0.17
0.025 400 7642 0 0.37
0.05 100 3654 0 0.27
0.05 200 7305 0 0.60
0.05 400 14614 0 1.27
0.075 100 5131 1 0.64
0.075 200 10476 4 1.40
0.075 400 21200 5 2.88
0.1 100 6715 10 1.35
0.1 200 13306 23 2.73
0.1 400 26652 47 5.83

In other experiments reported in [110], we evaluated the computation of Kleene star
by iterative, and squaring algorithms. We saw that the squaring performs better than
incremental algorithm except cases where n is small. This can be explained by the fact
that in the squaring approach, the effect of filtering is multiplied in the following sense.
Every sequence that we discard may have appeared in several factorizations of longer
sequences; squaring will reuse sequences as subsequences in many places which the
incremental approach does not do. Another effect that we observed is that the number of
zones covering sequences of length n does not explode but rather seem to stay constant
over iterations.

We have demonstrated the feasibility of the offline monitoring of TRE and their
integration with temporal logic. In the context of dynamic verification, it is useful to
monitor assertions during simulation so as to possibly stop early in case a violation.
Making our algorithm work online would require to re-order the operations on zones
according to some notion of time. The duration restriction 〈 〉I operator may also enjoy
specific treatment so as to cancel matches beyond the maximum duration in I . An online
approach to timed regular expression monitoring appears in [111].

Regular expressions can also specify actions that represent events; this also was the
model of the timed regular expressions of [25]. In our signals framework, we can
also handle events such as rise and fall of signals. Events only induce finitely many
matches and can be represented by punctual zones. In the setting of event-based regular
expressions, specification languages have concatenation operators allowing to wait a
(non-deterministic) number of discrete time units between events; the generalization of
SVA proposed in [63] shows that this concept is easily lifted to the real-time setting. The
extension of timed regular expressions to events will be demonstrated in Chapter 7.



7

Pattern-Based Measurements

This chapter is concerned with the specification of quantitative properties, also known
as measurements, and their computation on several segments of a given trace. In this
context we propose a declarative specification language for measurements, with a par-
ticular focus on the specification of mixed-signal behaviors. Timed regular expressions
are extended with events and conditional expressions, and used for defining segments
of the simulation trace over which measurements are to be taken. We conjoin measure
specifications to such expressions, in order to describe a particular type of aggregation
(maximum, minimum, average, etc.) to be done over the matched segments of the trace.
The resulting language enables expressive and versatile specification of measurement
objectives. This measurement framework was implemented, and applied to a case study
based on an analog communication protocol for automotive embedded systems. Exper-
iments demonstrate that the proposed technique is usable with a very low overhead
compared to a typical simulation.

7.1 Introduction

7.1.1 Motivation

In the AMS context, various measures are associated with systems and their executions.
Measures are computed by applying various operations such as summation/integration,
arithmetical operations, minimum/maximum to certain segments of the simulation trace.
The endpoints of these segments are defined according to the occurrence of certain events.
Simple measures can be realized by inserting additional observer blocks to the system
model, but when they are more complex, they are extracted using manually-written (and
error-prone) procedural scripts that perform computations over the traces.

Measures typically take place over particular intervals of time, where a given behav-
ior can be observed, and the measure can thus be taken. The semantics of a regular
expression ϕ relative to w is not defined for a single time point like in temporal logic,
but for a pair of points (t, t ′) such that the segment of w between t and t ′ matches the
expression. This makes regular expressions ideal for defining sets of time segments. Once
a time interval is isolated, the measure often consists in a simple aggregating operation

82
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such as taking a minimum, maximum, or integral of some signal in the trace. In the
approach we propose, one gains the expressiveness of the language of Timed Regular
Expressions (TRE), which allows to detect complex sequences of events and states in
the trace. This facilitates repeated measurements (over several intervals) according to
a sequence of events, while maintaining a clean separation of the behavior description
from the measure itself.

7.1.2 Our Approach

We propose a declarative measurement specification language for automatically extracting
continuous measures from mixed-signal traces. Expressions are used to define the scope
of measurements, using a variant of TRE specially adapted for this purpose, by adding
conditional expressions and atomic events. An additional language layer enables defining
the particular measures applied to the matching segments. The extraction of measures
takes advantage of the pattern matching procedure introduced in Chapter 6 for computing
the set of segments of a trace that match a timed regular expression.

The problem of matching TRE over Boolean signals was studied Chapter 6. In order
to use such expressions for real signals we add threshold propositions. To further gain in
expressiveness we also introduce operators that condition the match of a TRE according
to some behavior occurring before, or after the matched segment. We also define events of
zero duration such as rising and falling edges. The resulting specification language, called
Signal Regular Expressions (SRE), can be monitored against mixed-signal behaviors. By
wrapping such specifications with some aggregating operator, we get our definition of
declarative measurements. The resulting framework is a first step toward making the
practice of measurement extraction more rigorous and automated.

7.1.3 Related Work

Quantitative Regular Expressions of [20] enable the definition of streaming algorithms,
computing some aggregated value based on regular properties of the input trace. Assertion-
based features of [41, 13] proposed independently are similar in spirit to ours. The
authors propose an approach for quantitative evaluation of mixed-signal properties ex-
pressed as regular expressions. In contrast to our work, the regular expressions are
extended with local variables, which are used to explicitly store values of interest, such
as the beginning and the end time of a matched pattern. In [41], emphasis is placed
on measuring features (quantitative properties, in our terminology) of hybrid automata
models using formal methods. We also mention the extension to TRE proposed in [63]
that combines specification of real-time events and states occurring in continuous-time
signals. Their syntax and primitive constructs are inspired by and extend industrial stan-
dards PSL and SVA. This work focuses on a translation from TRE to timed automata
acceptors, but does not address the problem of pattern matching an expression on a
concrete trace.

The use of pattern matching in verification has been considered in the setting of
formal verification of concurrent programs in [51]. In the context of modeling resource-
constrained computations, quantitative languages [36] were studied as generalizations
of formal languages in which traces are associated with a real number rather than a
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Boolean value. The idea of quantitative languages are further extended in [64], by
defining the model measuring problem. The model checking problems of TCTL and
LTL are extended in [114, 50, 18] to a model measuring paradigm by parameterizing
the bounds of the temporal operators. The authors propose algorithms for identifying
minimum and maximum parameter values for which the model satisfies the temporal
formula. A similar extension is proposed in [26] for Signal Temporal Logic, where
both the temporal bounds and real-valued thresholds are written as parameters and
inferred from signals. Robust interpretation of temporal logic specifications, presented
in Chapter 5, is another way to associate numbers with traces according to how strongly
they satisfy or violate a property.

7.2 Signal Regular Expressions

In this section we define Signal Regular Expressions (SRE). This specification language
is based on TRE interpreted over continuous-time signals, with atomic expressions build
from Boolean variables and real variables x , that are checked using threshold conditions
of the form x ≤ c for c constant in R. In addition to previous operators we also con-
sider conditional operators, that enable checking the occurrence of some subexpression
without changing position in time. Such an operator improves the expressiveness when
expressions are used to specify segments of a given trace.

7.2.1 Syntax and Semantics

We let T= [0, d] be the temporal domain of simulation traces. A proposition is taken to
be either a Boolean variable, a condition x ≤ c for some real variable x ∈ X and constant
c, the negation ¬p of some proposition p, or the disjunction p ∨ q of propositions p and
q. Let us assume P a set of propositions conforming to this description. The semantics
of propositional operators is that of predicates over T, denoted [p]w, or simply pw in the
absence of ambiguity for some p ∈ P.

The syntax of signal regular expressions is given according to the following grammar:

ϕ ::= ε | p | ↑ p | ϕ? | ϕ! | ϕ ∨ϕ | ϕ ∧ϕ | ϕ ·ϕ | ϕ∗ | 〈ϕ〉I

for p proposition in P, and I an interval of R≥0.
In Signal Regular Expressions we consider two types of actions (atomic expressions)

associated with a proposition: the proposition holds continuously over some time interval,
or the time interval is singular and is located at a discontinuity of the proposition. Actions
form the atomic expressions in our pattern language; their semantics are that of predicates
over T2. On the one hand, p denotes the action of p holding for some positive time, with
semantics defined by (t, t ′) ∈ p

w
if and only if t < t ′ and t ′′ ∈ pw for all t ′′ ∈ (t, t ′). On

the other hand, ↑ p denotes the instantaneous action of p becoming true, with semantics
defined by (t, t ′) ∈ [↑ p]w if and only if t = t ′, p(t−) = 0, and p(t+) = 1. As with signals
we define abbreviations ↓ p = ↑¬p and l p = ↑ p ∨ ↓ p.
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The future operator ‘?’ is borrowed from dynamic logic [58]; operator ‘!’ is its past
version.1 The semantics of clauses ϕ? and ϕ! is given as follows:

(w, t, t ′) |≡ ϕ? if and only if t = t ′ and ∃t ′′ ≥ t, (w, t, t ′′) |= ϕ
(w, t, t ′) |≡ ϕ! if and only if t = t ′ and ∃t ′′ ≤ t, (w, t ′′, t) |= ϕ

The semantics of regular and timing operators is defined as in Section 6.2.1.

7.2.2 Match Set

Following the definitions in Chapter 6, we characterize ϕ by the set of segments of w that
match it, which is called the match set of ϕ. The match set of a signal regular expression
ϕ over w is the set of all pairs (t, t ′), denoted [ϕ]w, such that the segment of w between
t and t ′ matches ϕ. Formally, we let as previously:

[ϕ]w = {(t, t ′) ∈ T2 : (w, t, t ′) |≡ ϕ)}

The computation of a match set for a SRE ϕ can be performed as presented in Chapter 6
following the same argument:

Theorem 7.1 (Match Set Decomposition). For any finite variability trace w and SRE ϕ,
the set [ϕ]w is a finite union of zones.

Proof (sketch). By induction on the expression structure. For the inductive step ϕ = ↑ p,
just notice that each rise event of p is represented by a punctual zone in the match set of
↑ p. Formally we have [↑ p]w = {(t, t) : pw(t−) = 0 and pw(t+) = 1}. By finite variability
assumption the number of discontinuities of pw is finite. For the inductive step of ϕ?,
notice that [ϕ?]w is obtained by projecting [ϕ]w vertically on the diagonal. Therefore it
is finite union of sets of the form {(t, t) ∈ T2 : t ∈ I} for some interval I , which are zones.
Operator ‘!’ follows from a similar argument. Other inductive cases are treated in detail
in Section 6.3.

7.3 Measurement Expressions

7.3.1 Event-Bounded Expressions

We first consider a subclass of SRE that may only be matched by trace segments that
begin and end with events. Such expressions, called event-bounded, are well-behaving in
the following sense: given an arbitrary trace w with finite variability, an event-bounded
SRE can be matched in w only a finite number of times. Formally, event-bounded SRE
are a syntactic fragment of SRE given by the following grammar:

ψ ::= ↑ p |ψ? |ψ! |ψ ·ϕ ·ψ |ψ∨ψ |ψ∧ϕ

where p is a proposition, ϕ is an SRE, and ψ is an event-bounded SRE.
1In dynamic logic, a so-called test expression, denoted ϕ?, occurs over zero-length segments (t, t) such

that ϕ holds at time t.
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The match set of an event-bounded SRE ψ relative to an arbitrary (finite variablity)
trace w consists of a finite number of segments (t, t ′), for which t and t ′ are some
occurence times for some event appearing in ψ.

Theorem 7.2 (Match Set Finiteness). Given an event-bounded SRE ψ and a trace w, their
associated match set [ψ]w is finite.

Proof. By induction on the expression structure. Consider an arbitrary trace w and an
event ↑ p; by finite variability assumption there are finitely many time points in w where
↑ p occurs, so that its match set relatively to w is finite. Now let ψ be an event-bounded
SRE of the form ψ = ψ1 ·ϕ ·ψ2. The trace w matches ψ on the segment (t, t ′) if and
only if there exists some times s and s′ such that w matches ψ1 on (t, s) and matches ψ2

on (s′, t ′). By induction hypothesis there are finitely many such times t, t ′, s and s′ so
that ψ itself has a finite number of matches. The case of ψ? and ψ! follows directly from
induction; one can also see that the finiteness of the match set is preserved by ψ1 ∨ψ2

and ψ∧ϕ, which concludes our proof.

7.3.2 Quantitative Operations

Once the associated match set [ϕ]w is computed, we propose a two stage analysis of
signals. In the first step, we compute a scalar value for each segment of w that matches
ϕ, either from absolute times of that match, or from the values of a real signal x in
w during that match. Each value is associated with the start point of the match to
distinguish multiple values, and provide information on when the measure was taken.2

A measure expression is then given using sampling or aggregating operators according
to the following grammar:

µ ::= duration(ϕ) |min(x ,ϕ) |max(x ,ϕ) | integral(x ,ϕ) | average(x ,ϕ)

where ϕ is a signal regular expression, and x is a real variable.
Let ϕ be an event-bounded SRE and w a trace. The semantics JϕKw of ϕ relative to w

is the set of values in T×R defined by induction as follows:

Jduration(ϕ)Kw =
�

(t, t ′ − t) : (t, t ′) ∈ [ϕ]w
	

Jmin(x ,ϕ)Kw =
�

(t, mint≤t ′′≤t ′ xw(t ′′)) : (t, t ′) ∈ [ϕ]w
	

Jmax(x ,ϕ)Kw =
�

(t, maxt≤t ′′≤t ′ xw(t ′′)) : (t, t ′) ∈ [ϕ]w
	

Jintegral(x ,ϕ)Kw =
n

�

t,
∫ t ′

t
xw(t ′′)dt ′′

�

: (t, t ′) ∈ [ϕ]w
o

Javerage(x ,ϕ)Kw =
n

�

t, 1
t ′−t

∫ t ′

t
xw(t ′′)dt ′′

�

: (t, t ′) ∈ [ϕ]w
o

Notice that if ϕ cannot be matched by overlapping segments, then the resulting set repre-
sents a discrete-time signal. The measure µ may provide exactly the level of information
needed, or require a second processing phase. In this second step of the analysis, this
measure can be passed upon to other measurements, and in particular it may be further

2Here we adopt a future view of the measure, where its value at time t is defined by values of signals
after t. The past view is also possible; it consists in associating the value of the measure with the end time
of the segment, denoted t ′ in our equations.
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aggregated into a single “representative” value. Typically that consists in computing
standard statistical indicators over JµKw, such as the average, maximum, minimum or
standard deviation, etc.

We illustrate the use of our measurement language in the specification of the pseudo-
period measure, common in the electronic domain.

Example 7.1 (Pseudo-Period). For oscillatory real signals x the instantaneous period is
usually computed as the temporal distance between two successive positive edges. Let vmid be
the nominal intermediate level of signal x; we define the pseudo-period by

period(x , vmid) = duration(↑(x ≥ vmid) · (x > vmid) · (x < vmid) · ↑(x ≥ vmid))

Other common electrical measures such as rise time or duty cycle can also be defined
in our measurement language.

7.4 Case Study

7.4.1 Distributed Systems Interface

Distributed systems interface (DSI3) is a flexible and powerful bus standard [5] developed
by the automotive industry. It is designed to interconnect multiple remote sensor and
actuator devices to a controller. The controller interacts with the sensor devices via
so-called voltage and current lines. In this work we focus on two phases of the DSI3
protocol:

• The initialization phase called the discovery mode;

• One of the stationary phases called the command and response mode.

In the discovery mode, prior to any interaction the power is turned on, resulting in
a voltage ramp from 0V to vhigh. The communication is initiated by the controller that
probes the presence/absence of sensors by emitting analog pulses on the voltage line.
Connected sensor devices respond in turn with another pulse sent over the current line.
At the end of this interaction, a final short pulse is sent to the sensors interfaces, marking
the end of the discovery mode.

In the command-and-response mode, the controller sends a command to the sensor
as a series of pulses (or pulse train) on the voltage line, which transmits its response by
another pulse train on the current line. For power-demanding applications the command-
response pairs are followed by a power pulse, which goes above vhigh. This allows the
sensor to load a capacitor used for powering its internal operation.

The DSI3 standard provides a number of ordering and timing requirements that
determine correct communication between the controller and the sensor devices: (1)
minimal time between the power turned on and first discovery pulse; (2) maximal
duration of discovery mode; (3) expected time between two consecutive discovery pulses;
(4) expected time between command and response. Figure 7.1 illustrates the discovery
mode in the DSI3 protocol and provides a high-level overview of its ordering and timing
requirements. In this example, the controller probes five sensor interfaces.
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Figure 7.1: Overview of DSI3 discovery mode.

The correctness of a DSI3 protocol implementation in an automotive airbag system
was studied in [94]. The above requirements were formalized as assertions expressed in
STL and the monitoring tool AMT [96] was used to evaluate the simulation traces. We
use instead Signal Regular Expressions to specify signal segments of interest and define
several measures within the framework introduced in Section 7.2. We study two specific
measures: (1) the time between consecutive discovery pulses; and (2) the amount of
energy transmitted to the sensor through power pulses.

In order to generate simulation traces, we model our system as follows: the controller
is a voltage-source, and the sensor is a current-source in parallel with a resistive-capacitive
load. The schematic is shown in Figure 7.2. During the discovery phase the load is
disabled; the voltage source generates randomized pulses in which the time between
two discovery pulses has a Gaussian distribution with a mean of 250µs and a standard
deviation of 3.65µs. For each power pulse of the command-and-response mode, the load
is enabled and randomized with fixed capacitance value of c = 120nF and resistance
value r uniformly distributed in the range [25Ω, 35Ω]. Threshold levels are 4.6V low,
7.8V high, 8.3V power, and 11.5V idle.

7.4.2 Time between Consecutive Discovery Pulses

To characterize a discovery pulse, we first define three regions of interest – when the
voltage x is (1) below vlow; (2) between vlow and vhigh; and (3) above vhigh. We specify
these regions with the following propositions:

qlow = (x ≤ vlow)
qmid = (vlow ≤ x ≤ vhigh)
qhigh = (x ≥ vhigh)
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Figure 7.2: Electrical model of the system.

Next, we describe the shape of a discovery pulse. Such a pulse starts at the moment
when the value of x moves from qhigh to qmid. The signal must then go into qlow, qmid and
finally come back to qhigh. In addition to its shape, the DSI3 specification requires the
discovery pulse to have a certain duration within timing interval [a, b] with a = 245µs
and b = 255µs. This requirement allows distinguishing a discovery pulse from other
pulses, such as the end-of-discovery pulse. We illustrate the requirements for a discovery
pulse in Figure 7.3 and formalize it with the following event-bounded SRE:

ψ= ↓qhigh · 〈qmid · qlow · qmid〉[c,d] · ↑qhigh

In order to measure the time between consecutive discovery pulses, we need to
characterize signal segments that we want to measure. The associated pattern shall
start at the beginning of a discovery pulse and end at the beginning of the next one, as
depicted in Figure 7.3. It consists of a discovery pulse ψ, followed by the voltage signal
being in the qhigh region, and terminating when the voltage leaves qhigh. This description
is not sufficient – we also need to ensure that this segment is effectively followed by
another discovery pulse. Indeed the standard does not constrain the time between the
last discovery pulse, and the end pulse. For this we concatenate a (future) conditional
expression, that specifies this additional constraint. The signal regular expression is
formalized as ϕ1 = ψ · qhigh · ψ?. Finally, we evaluate the measure expression µ1 =
duration(ϕ1) over the simulation trace.

7.4.3 Energy Transfer from Controller to Sensor

In the DSI3 protocol, the discovery mode can be followed by a stationary command and
respond mode. A command and respond mode sequence is a pulse train that consists of a
command subsequence in the form of potential pulses between vhigh and vlow, a response
subsequence by means of current pulses between 0 and iresp, and finishes by a power
pulse rising from potential vpwr to potential vidle in which a large current can be drawn
by the sensor. We ignore the communication part and focus on this later power phase.
We characterize the power pulse as follows: it occurs when the voltage goes from below
vpwr to above vidle, and back under vpwr. The three regions of interest are specified with
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Figure 7.3: Consecutive discovery pulses with timing.

the following propositions:

qpwr = (x ≥ vpwr)
qtran = (vpwr ≤ x ≤ vidle)
qidle = (x ≥ vidle)

Hence the pattern specifying a power pulse is expressed as

ϕ2 = ↑qpwr · qtran · qpwr · qtran · ↓qpwr

The signal regular expression does not make use of further tests. Given x the voltage
across and y the current thorough the communication line, the energy transfered to the
sensor is given by the area under the power signal x y. We assume that such a signal is
given in the simulation trace, and evaluate the measure expression µ2 = integral(x y,ϕ2)
directly.

7.4.4 Results

For our experiment we apply a scenario according to which our electrical model is
switched on/off 100 times in sequence to stress the discovery mode of DSI3. We imple-
mented a behavioral model of the circuit in VerilogAMS, using a UVM constrained random
stimuli to drive the current and potential sources. Simulation traces were generated using
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Table 7.1: Break down of computation times (s) for measures µ1 and µ2

Measure µ1 Measure µ2

|w| quantize match extract total quantize match extract total

1 · 106 0.047 0.617 0.000 0.664 0.009 0.004 0.011 0.024
5 · 106 0.197 0.612 0.000 0.809 0.050 0.005 0.047 0.103
1 · 107 0.386 0.606 0.000 0.992 0.101 0.005 0.100 0.216
2 · 107 0.759 0.609 0.000 1.368 0.203 0.005 0.260 0.468

Mentor Graphics’ Questa® ADMSTM simulator. The traces we generate conform to the
discovery, and command-and-response modes of the protocol. We compute match sets
for properties presented in Section 7.3.2 over these simulation traces using our prototype
implementation.

We then compared the execution times to compute measurements, using a periodic
sampling with different sampling rates. Note that our framework supports variable step
sampling, but we used periodic sampling as a way to easily assess the influence of the
number of samples. The computation times are given in Table 7.1 with the detailed
computation time needed for evaluation of threshold propositions (quantize), match set
computation (match), measure aggregation (extract) and total computation time (total).
Computation of match sets does not depend on the number of samples but on the number
of uniform intervals of atomic propositions. The evaluation of threshold propositions
using interpolation, and the computation of measures like an integral can be done in
time linear in the number of samples.

The case study confirms the practicality of our approach, in terms of performance and
expressiveness. Its applicability to other types of circuits, or other engineering domains
would require further investigations.



8

Analog Measurements in the Digital
Testbench

In this chapter, we study the problem of measuring analog and mixed behaviors by insert-
ing verification code in a digital testbench. The monitoring of analog behaviors, unlike
digital ones, relies heavily on the use of measures, either as a preprocessing step, or as the
final outcome of the simulation. A sound verification of mixed-signal designs featuring
large digital portions often relies on a structured digital testbench, where intermediate
verification results interact in a complex way. To this end we aim to provide digital
components with means to access analog measurement algorithms as they already exist,
in a unified fashion. This is realized by using a discrete representation of continuous-time
signals in terms of a sequence of time-stamped values, which can also be implemented
using a sampling clock and real variable. Several types of measurement wrappers, calling
the same core algorithms are considered according to the verification context. Using mea-
surements implemented in the simulator code, and not written manually is expected to
both provide more automation and improve the accuracy of the results. We implemented
a prototype of this framework and evaluated it on a case study.

8.1 Introduction

8.1.1 Motivation

Analog and digital verification follow different procedures. Digital verification relies on
a testbench which consists in a collection of HDL/HVL elements surrounding the design.
The testbench drives the input stimuli to the DUT and monitors the output response
conjointly in an online fashion. Analog verification also contains a testbench, which
consists of template sources that drive the design and measurements that are mainly
done offline. We consider in particular the case of digital-centric verification, in which the
predominant part of the circuit is digital and the verification is structured according to
digital methodologies. Currently, analog monitors need to be implemented by verification
engineers as modules, or as classes. It is possible to develop libraries dedicated to probing
and analyzing analog signals in a testbench. However such libraries are bound to a given
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testbench architecture and their definition may not conform to that of simulator internal
measurements. When implemented as simulator commands, measurements can also
take advantage of information not available to the digital simulator, such as the correct
interpolation method.

Notice that the sole use of simulator internal measurements by calling run manage-
ment primitives, or SPICE commands, is not entirely satisfactory. If the DUT changes,
for example a new component is added, or a SPICE model is replaced by an HDL one,
measurements will not automatically transfer across simulation environments. These
measurements can be essential in establishing correct operation of some circuit, or ver-
ifying some assumption (or guarantee) relative to input (or output) signals of some
sub-circuit. Overlooking the need to ensure continuous verification of AMS behaviors
(going along during various development stages) can cause failure to identify design
bugs. We propose a framework for making analog measurements available to the digital
testbench, for the verification of analog and mixed-signal behaviors in a digital-centric
context.

8.1.2 Our Approach

The framework that we propose aims at extracting the same measures, independently
of the surrounding verification code. From a user perspective, the measurement is an
HDL/HVL statement or sentence, and can interact with its digital environment. That
statement or sentence is one aspect of the measurement that we call the measurement
view. Another aspect of a measurement is its actual implementation, that we call the
measurement core. Every measurement view, for example a task or module, relies on the
same measurement core to perform the computation. What ties together the view and
the core of a measurement is called a wrapper, and consists in additional code, possibly
hidden to the user, ensuring interaction of core algorithms with the visible object. We
ensure this way that analog measurements in digital testbenches and other contexts are
accurate and repeatable.

Every context surrounding a measurement comes with a different set of constraints,
relative to how the chosen measurement view can interact with HDL/HVL constructs.
For example, inside a class, one can instantiate another class, call a function, but one
cannot instantiate a module. Independently of the context, the expected functionality
of a measurement is summarized as follows. The measurement can be instantiated with
specific control values, for example a threshold crossing detection is parameterized by the
threshold itself as a control value. It can be applied to portions of the trace specified using
surrounding HDL/HVL constructs. Eventually its output is accessible to its immediate
environment, in particular other measurements. This last point is important in order
to create complex measure from basic ones. We use for each measurement view the
same constructs for input and output signals, and this way ensure easy composition of
measurements.

Following the mode of operation of digital verification, measurements are imple-
mented in an online fashion. To represent both discrete-time and continuous-time signals
uniformly, we view the output of a measurement as a sequence of time-stamped values.
The interpolation method is assumed to be taken care of by measurements algorithms.
For HVL models, we use the ability to create objects during simulation, and represent
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each sample directly using two real dynamic variables, holding the measured value, and
the absolute time at which it was obtained. Every time some new value is measured, a
sample is created in memory, and passed on to a downstream function for processing.
For HDL models, we represent the signal using static real and Boolean variables. The real
variable represents the measured value, and the Boolean variable has an edge every time
some new measure is obtained, and is called the clock. A discrete measure is obtained by
sampling of the output quantity by the output clock; a continuous measure is obtained
by interpolation of the output quantity between two output clock edges.

8.1.3 Related Work

A library of Verilog-AMS monitors is proposed in [30], performing usual analog measure-
ments such as threshold crossing detection. The work of [115] presents a case study
around analog monitors in the mixed-signal setting, with emphasis on the Open Verifica-
tion Methodology (OVM), a precursor to UVM [8]. We provide similar measurements in
the form of Verilog modules, but accessing analog quantities via system commands. The
integration of analog monitors in the UVM verification environment is considered in [69].
Due to analog signals not being visible in HVL, the monitors have to be split between
a HVL part and a HDL part, with the HDL part featuring the analog and mixed-signal
functionality. The problem of accessing analog quantities and real variables from HVL
uniformly is solved in [105] in the context of analog assertions. The advantage of bring-
ing continuous, analog information to the digital testbench is outlined in [31], under the
banner of coverage analysis. A complete, practical study of integrating analog assertions
in a digital environment is proposed in [91].

8.2 Preliminaries

8.2.1 Online Measurements

In this section we give an abstract definition of an online measurement in terms of
its features: the causality or dependence on past values, the update or control, the
instantiation for a given signal or real parameter, and the input – output composition.

A measurement µ is a statement that, given a trace w and a time t in its definition
domain, takes a value JµKw (t) ∈ R. Let us define a past measurement µ as verifying
JµKu (t) = JµKv (t) for all traces u and v over T such that u[0, t] = v[0, t]. The value of
a past measurement at time t ∈ T only depends on the portion of the trace w[0, t]. In
what follows we assume that all measurements are past; this enables us to compute them
online. For this we assume v to be a short, unitary trace segment (for example a linear
piece in the case of piecewise linear traces).

In the setting of measurement instantiated in a digital context, we only consider
sampled signals.1 Fix T a discrete (finite) temporal domain. We let U= T×R denote the
set of possible signal samples; a signal is now a sequence of samples. We describe the
online computation of a past measurement µ in terms of some set of functions operating

1For continuous signals, consider the interpolation scheme as being part of the measurement itself. The
only limitation is that measurement values can only be produced at sampling points, and not in between.
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over the possible state of the measurement algorithm, in terms of initial value, update,
and computation of the measure itself. A measurement µ is defined in terms of:

• A state domain S;

• An initial state aµ ∈ S;

• An evaluation function rµ ∈ RS;

• An aggregating function sµ ∈ SS×U.

Let us denote by yw(t) the value of the measurement state at time t. The signal yw has a
forward inductive definition:

yw(0) = aµ yw(t
′) = sµ(yw(t), w(t ′))

for t ′ the sampling point following t. The value of measurement µ at time t ∈ T is given
by JµKw (t) = rµ(yw(t)).

We place no restriction on the size of the domain S, leaving the possiblity to store
the entire prefix w[0, t] in yw(t). Hence every past measurement can be given in terms
of the equations above. In practice most measurements only require a bounded amount
of memory. For example, the online computation of the maximum of a real variable x
can be described by defining rµ as the identity over the reals, and letting aµ = −∞ and
sµ : (M , v) 7→max{M , supt∈T xv(t)}. Here a single (floating point) real value is sufficient
to store the state of the measurement.

There are two extreme cases of state updates that can occur in a measurement, when
processing a new sample t after having processed trace w up to time t:

• yw(t ′) = yw(t): sample t ′ is ignored, and the measure remains that at time t;

• yw(t ′) = aµ: prefix up to t is forgotten, and the measure is that over some empty
segment.

In the first case we could say that the measurement is inactive, while in the second case
we may say that the measure is reset.

In general we consider abstract measurements, that can be instantiated when some
real value c (or real variable x) is given as a parameter. Let µ be an abstract measurement;
we write µ(c) (respectively µ(x)) to denote the corresponding instance of µ. Creating
instances of abstract measurements is required in many contexts. For example, a thresh-
old crossing measurement, that measures the absolute time some quantity crosses some
threshold takes two parameters: the variable it applies to, and the real-valued threshold.
We can also consider abstract measurements with several parameters following the same
principle.

Given an abstract measurement µ2 with real variable parameter, and a measurement
µ1, we can also define µ1(µ2) the measurement produced by their input – output compo-
sition. For arbitrary traces u and v such that xu = Jµ2Kv with variable x fresh in v, and
yu = yv for all variables y 6= x , it holds that Jµ1(x)Ku = Jµ1(µ2)Kv.
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Figure 8.1: Insertion of a measurement view µ, along with measurement statements
µ1,µ2, . . . and assertion statements ϕ1,ϕ2, . . . in a mixed-signal simulation. Dynamic
constructs appear dashed, static constructs appear plain.

8.2.2 Interaction with Environment

In this section we explain what type of interaction measurements can have in general
with the verification environment. Let us first briefly characterize HDL/HVL constructs
relevant in the context of the declaration or instantiation of a measurement.

The smallest, and most general object to contain functionality is a task. A special case
of task in known as a function. General tasks can spread their operation over simulated
time, functions cannot. A task can be called at any time in the simulation and return
at any later time. A task has the possibility to read and write quantities across logical
time by passing as argument such quantities by reference. An assertion can call a task or
function upon completion of some sequence (the construct that corresponds to regular
expressions in SVA), or upon violation or satisfaction of some property.

In HDL, functionality is often grouped into a module, with input and output ports and
control parameters. An important aspect of modules is that all its variables are created at
the start of simulation; we call such variables static. In HVL, functionality can be grouped
in a class, which may be instantiated during the simulation. In that context we may not
use a module to perform a measurement: modules cannot be instantiated after the start
of simulation. Variables of a class are dynamic; they can be created in the course of the
simulation, hence a class can thus implement behaviors requiring unbounded memory.

To connect several modules and class instances, one can use an HVL interface. This
is a construct specific to SystemVerilog, however in different languages other types of
objects can be used to achieve the same functionality. An interface is a unit of code that
aims to ensure proper connections of several modules or class instances. It can be used
between the testbench and the DUT, or between two modules of the DUT. Assertions are
usually placed in an interface to check some behavior observable at input and output
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ports of modules and larger blocks, for example properties of some protocol between
sub-circuits.

Measurements views ought to be instantiated in some part of the testbench, where
the quantity they apply to is being watched. For low level behaviors (realized by one sub-
circuit) or some interaction between components, measurements can be instantiated in
some interface. For high level behaviors (realized by several sub-circuits) measurements
can be placed in a dedicated monitor in the testbench. In other situations measurement
statements can also be placed in the run management file, or in the DUT modules. We do
not address those situations here, as measurement commands like extracts are already
implemented in most commercial simulators. Figure 8.1 summarizes the relevant places
where assertion and measurements can be inserted in a mixed-signal simulation.

In contrast to absolute time windows used in existing analog measurement languages,
we allow digital signals to control directly the operation of the measurement, based on
three control events activate, deactivate, and reset loosely corresponding to the type
of state update previously discussed. The measurement takes one signal as input and
produces another signal as output.2 Control events can be created by making the mea-
surement code sensitive to the change of value of some Boolean variable. Alternatively
such events can correspond to function calls. Similar remarks can be made for signals.
The successive values of some signal can be transmitted via some real variable that drives
some measured quantity, or passed on to the measurement by some driving code calling
a dedicated function.3 In either case parameters of the measurement can be passed upon
instantiation of the measurement construct.

8.3 Visible Objects

We now introduce our solution to the problem of testbench measurements, which comes
in the form of four measurement views. Their operation is described in each programming
context. We use a syntax akin to the Verilog language; what is described here can be
implemented in Verilog, VHDL, or in a software programming language like C.

Consider µ(x , c) a measurement with real variable x and constant c as parameters.
Our four measurement views of µ(x , c) consist of a set of functions, a task, a module, and
a class. Each of these views gives us the same functionality, yet is available in different
contexts according to HDL and HVL restrictions.

8.3.1 Set of Functions

According to this view, a measurement is a set of seven functions that closely follow
the mathematical description of Section 8.2.1. There are specificities, however, coming
from procedural languages. In particular, the same abstract measurement can be applied
to different signals, or with different constant parameters. We distinguish instances by

2Several input signals could be considered; a single one is sufficient for the purpose of introducing our
approach.

3We find that the first option is suitable for static settings, where the lifetime of all variables is the
whole simulation. Conversely the second option suits best in dynamic settings, where the variables lifetime
can be shorter than the simulation.
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numbering them in a unique fashion. This numbering scheme allows the user to specify,
for each action, to which measurement instance it applies. That number can be for
example a long integer, or of any other data type sufficiently large to distinguish between
measurement instances. The state of the measure is stored implicitly and does not need
to be handled by the user.

The first step in using a measure set of functions is to declare this number, with the
statement longint number for example. The initialization of measurement µ proceeds
with a dedicated function INITIALIZEµ, declared as follows:

function INITIALIZEµ(number, c)
The update of measurement µ with a new value of the signal denoted x is obtained by
function UPDATEµ, declared as follows:

function UPDATEµ(number, x)
The control of the measure is realized by three functions denoted ACTIVATEµ, DEACTIVATEµ,
and RESETµ, which require number as argument. Note that the passage of time may affect
the value of the measure hence deactivating the measure, and not updating the measure
are not equivalent.

The measure µ is not necessarily defined at all times, for example in the case of a
discrete measure. Whether the measure is defined at the current time is answered by
function VALIDµ by calling VALIDµ(number), which returns the corresponding Boolean
value. At time when µ is defined, its value is obtained via function EVALUATEµ declared
as follows:

function EVALUATEµ(number)
The implementation can ensure that a measurement is initialized before it is used, and
returns an error if the measurement is evaluated when not defined.

8.3.2 Task

In this view, the measurement µ(x , c) consumes values by reading the input quantity x
according to a sampling clock p, and produces values by writing some quantity y and
producing an edge in sampling clock q. These sampling clocks are simply Boolean signals,
with the associated time sequence given by both of their edges, rising and falling.

The use of input and output sampling clocks becomes necessary when such quantities
represent discrete-time signals, and thus are not everywhere defined. For continuous-
time signals, the time sequence given by such clocks may also be necessary when using
a representation in terms of samples and interpolation. Note that quantities managed
by the digital simulator are interpreted as piecewise constant, and thus in this case one
may use the event associated with their change of value as a sampling clock.

The measurement is controlled by additional Boolean variables e and f as follows.
Variable e is used as an enable signal, which activates the measurement on its rising
edges, and deactivates it on its falling edges. Variable f is the restart signal, that causes
the measure to be reset on the occurrence of both its edges, rising and falling.

The prototype of a measurement task is as follows:
task WRAPPERTASKµ(x , p, y, q, e, f , c)
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where x , p are the input signal and clock, y, q are the output signal and clock, e is the
enable signal, f is the restart signal, and c is a constant parameter argument to the
measurement. The task is called by the user at the beginning of the simulation, and runs
for its entire duration. This task consumes the simulation time and updates its output
signals whenever the input signals they depend upon change.

8.3.3 Module

The use model of a measurement module is similar to that of a measurement task. The
module takes a signal as input and produces a signal as output. Signals are represented
as a pair of variables, real and Boolean. Note that this representation is necessary for
discrete-time signals, that may have identical consecutive values. Under the semantics
of digital simulation, the piecewise interpolation of such signals merges such values in
one linear segment, and the original discrete-time signal cannot be reconstructed.4

We treat measurement constant parameters as proper parameters (not changing
during the entire simulation), so as to guarantee a consistent behavior. The measurement
module has the following prototype:

module WRAPPERMODULEµ #(c) (x , p, y, q, e, f )
As for the task view, we denote x , p the input signal and clock, y, q the output signal and
clock, and e, f the enable and restart signals. Constant c is a parameter argument to the
measurement. The measurement defines a set of sampling points with value given by y
on the edges of signal q.

8.3.4 Class

In this view, the measurement is a single class that provides as set of functions for comput-
ing the measure. We rely for this on the decomposition of measurements of Section 8.2.1,
and define measurement classes following the UVM standard for the definition of mon-
itors. The input and output of monitors are transactions, with a dedicated type also
known as UVM sequence item. In the case of real signals such as the input signal and the
output measured value, transactions represent signal samples. This class has two fields,
containing absolute time t and real value v:

class sample extends sequence_item
real t
real v

end class
The control part of the measurement uses empty transactions declared with class

names activate, deactivate, and reinitalize, whose typing is sufficient to command the
corresponding action. This measurement class has the structure of a UVM monitor. The
class is given ports corresponding to each of these inputs and outputs: x for the input
samples, y for the output samples, d, e for the deactivate and activate transactions, and
f for the reset transactions. Its constructor takes as argument the constant real c that
parameterizes the measure. The instantiation of the measurement then simply consists

4In VHDL, there are ways to detect assignments even when they do not change a value; that is not the
case in Verilog.
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in instantiating the measurement class. The declaration of the measurement class for µ
is as follows.

class WRAPPERCLASSµ extends monitor
port #(sample) x , y
port #(deactivate) d
port #(activate) e
port #(reset) f

end class
In order for the measurement class instance to observe electrical or real quantity x , it

will need a sampling agent to transform it into a series of transactions of type sample. This
sampling agent consists in a UVM monitor that samples values of signal x according to
an input clock – the sampling clock may be derived from the input signal itself. In return
it will produce transactions holding the time-stamped values of the observed signal.

8.4 Implementation

In this section we propose a framework for implementing measurements core algorithms,
and sketch an implementation of wrappers to obtain the measurement views of Sec-
tion 8.3 in this context.

8.4.1 Core

Let us fix a measurement µ. We assume that the measurement computation is broken
down into functions rµ and sµ, and constant aµ as described in Section 8.2.1. Those
functions may use the additional argument c for cases where the measure is a template
parameterized by some constant c. In that case the constant aµ becomes a function of c.
The internal state of µ is stored in a data structure M , whose type depends on the state
space S of measurement µ. In addition let us define a function vµ ∈ {0,1}T, such that
vµ(M) = 1 when the measure µ is defined (discrete measure) or produces a sampling
point (continuous measure), 0 otherwise.

Algorithms for measurement µ can always be implemented this way. Constant aµ
holds the initial value of M . Whenever a new input sample (or segment) xu(t) is acquired,
the function sµ aggregates the new value of x into M , according to an update of the from
M := sµ(M , (t, xu(t))). Function vµ is a Boolean function that indicates whether the
measurement is defined in that instant (whether the property µ is measurable). Finally
rµ gives the measured value based on the current state M . If the measure is undefined
the function rµ produces an estimate, or an incoherent value.

Let us take for example a threshold crossing measurement.

Example 8.1. Measurement µ with parameters x , c computes the times at which some
real signal x crosses the threshold c upward. The state of the measurement core is a tuple
M = (m0, m1, m2, m3, m4) of real values m0, m1, m2, m3 storing the current time, current
value, previous time, previous value, and real value m4 storing the threshold c. We initialize
the measurement state by

aµ(c) := (0,0, 0,0, c)
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The state is updated by
sµ(M , (t, r)) := (t, r, m0, m1, m4)

with (m0, m1) the previous sample. The time of crossing is computed based on the state M
by

rµ(M) :=

(

m2 + (m0 −m2)
m4 −m3

m1 −m3
if m1 −m3 6= 0

0 otherwise

Such a time of crossing is only relevant when the last two samples lie at opposite sides of the
threshold, that is

vµ(M) :=
§

1 if m3 ≤ m4 ≤ m1

0 otherwise

8.4.2 Wrappers

We now describe the how measurements views are connected to the measurement core.

Set of Functions The implementation of some measurement µ as the previously de-
scribed set of functions INITIALIZEµ, UPDATEµ, ACTIVATEµ, DEACTIVATEµ, RESETµ, and
EVALUATEµ is transparent. Such HDL system functions simply call directly the mea-
surement core implementation, managing the different instances of the same measure
accordingly.

Task For measurement tasks, the functionality of the wrapper consists of the following
parts: (1) initialize the measurement core; (2) sample the input signal according to
the input clock; (3) update the measurement core when a new sample is acquired; (4)
activate, deactivate, or reset the measurement core when corresponding events occur.
These functions can be achieved by the following event-driven code:

task WRAPPERTASKµ(x , p, y, q, e, f , c)
M := aµ(c)
forever @(l p or l e or l f )

if l f then
M := aµ(c)

end if
if l p and e then

M := sµ(M , x)
y := rµ(M)
if vµ(M) then

q = ¬q
end if

end if
end forever

end task
In our prototype implementation the tasks wrappers are programmed using the Verilog
Procedural Interface (VPI) [1]. This enables using an unbounded amount of memory,
and makes it possible for the code to call analog simulator internals.
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Module The interface of a measurement module is similar to that of the task. We build
a wrapper that calls the measurement task, instead of the measurement core. This demon-
strates the flexibility in this approach. A verification engineer may want to define a dif-
ferent interface to a measurement module, or additional control signals. To achieve that
effect it is sufficient to modify the wrapper that we provide. The module wrapper simply
calls the task wrapper at the start of simulation:

module WRAPPERMODULEµ#(c) (x , p, y, q, e, f )
real x , y
logic p, q, e, f
input x , p, e, f
output y, q
initial WRAPPERTASKµ(x , p, y, q, e, f , c)

end module

Class Wrappers for measurement classes are built using the view of a measurement as a
set of functions. Our implementation of task wrappers is based on the structure of UVM;
the measurement uses transactions to interact with its environment. When measuring
some analog signal V (n) such transactions are obtained via an additional agent that we
define via the class analog monitor with the following skeleton:

class analog_monitor extends monitor #(sample)
port x
. . .
task body

forever @(p)
sample m= V(n)
x.write(m)

end forever
end task

end class
This agent is then connected via its analysis port to the measurement class instance.
The implementation of the class wrapper consist in monitoring each port and taking the
corresponding action by calling core functions; details are language specific and we omit
the pseudo-code.

8.5 Case Study

A Phased-Locked Loop (PLL) is a circuit that generates an output periodic signal syn-
chronized with some input periodic signal. We use a PLL design based on the textbook
example of [27], such that the output period is 1

16 times the input period. Two other
signals are of interest. The locked signal is high if and only if the PLL output signal
has a stable period that closely satisfies the specification. The supply voltage signal also
influences the correct operation of the circuit. We denote x the input signal, y the output
signal, p the locked signal, and z the supply voltage. Variables x , y , and z are interpreted
as real signals, while variable p is interpreted as a Boolean signal.
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Two versions of the design are considered in alternation: a real number model, and
a SPICE model. The real number model only emulates the voltage and control behavior
of the PLL. These two version of the DUT can be evaluated using the same testbench,
which indicates that the proposed methodology can be used across abstraction levels.

The design is given some random input stimuli parameterized by:

• period of x

• duty cycle of x

• constant voltage at z.

The testbench is written in SystemVerilog and using UVM, and we develop measurement
classes following the definitions of Section 8.4.2. We aim to take two measures during
the simulation: the relative jitter and the locking time, and check some operating area
safety condition.

Relative Jitter We define the relative jitter as the standard deviation of the pseudo-
period in the output voltage y of the PLL, computed over a sliding window of 20 values
when the p signal is high. The period is taken as the time difference between two
successive crossings of threshold vth, some real value representing a middle threshold
voltage. To perform the measurement we use a period measurement class. We create an
instance of this measurement class that we add to the environment, along with an analog
monitor that we connect to y by hierarchical name. We chain the period measurement
with a jitter measurement class using an input – output composition.

Locking Time The locking time is defined as the time between a parameter change in
the input stimuli generator and the subsequent positive edge of the signal p at the output.
We define a duration measurement class, controlled by an activation event that triggers
a continuous time clock to measure the time elapsed, a deactivation event whose effect
is to fix the output value to the current value, and a resetting event that sets the clock to
0. The measurement class instance is controlled by the following events. The activation
event is given as the disjunction of all events attached to the change of input parameter
values. The deactivation event is defined by the rising edges of p. The resetting event is
tied to the activation event.

Safe Operating Area The PLL is considered safe if z is not above vunsafe for more than
dmax consecutive time units. We use the duration measurement agent with the following
control signals: the reset and activate events are tied to upward crossings of vunsafe by z,
and the deactivate event is defined by negative downward crossings of vunsafe. We use a
SystemVerilog assertion to check that the duration is within acceptable range dmax.

The overhead caused by such measurements is not observable relative to the sim-
ulation. The simulation of the real-number model is almost instantaneous, while the
simulation of the SPICE version of the design takes time ≈ 300 seconds. The computa-
tional performance of our algorithms is due to the fact that measurements do not interfere
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with the analog simulation. In the setting of mixed-signal simulation, this means that no
additional analog solution points are requested from the analog solver.

Conversely, performing such measurements online can save simulation time by stop-
ping the simulation early in case of violation. This is already the case for other forms of
measurements already implemented in commercial simulators, in particular safe operat-
ing area checks. What our method enables, is to extend the scope of online measurement
to complex ones, formed by input output composition or other forms of combination.
By allowing the measurements to be inserted in interfaces, modules, or classes of the
testbench, one also makes sure they are reused considering the same circuit at a different
level of abstraction, something we also confirmed is possible.

To sum up, we improved the state of the art in measuring analog behavior in a
digital mixed-signal context, through the following principles. The first key aspect of
our approach, is the ability to control a measurement using events. Such events come
directly from the digital simulation process; the measurement is causal and can thus
be done in an online fashion. Measurements are accessible through various views, this
is the second key point of our approach. That way it can be used in several contexts:
in the modeling code, testbench code or configuration code. Here we focused on the
testbench part, which is novel. The third ingredient, is that algorithms used to compute
the measure are the same irrespectively of which view of the measurement is considered.
This enables perfect integration with existing digital verification practice, while retaining
most of the guarantees of simulator-implemented measurements.



Conclusion

Summary

The verification of systems featuring some interaction between continuous and discrete
behaviors, such as mixed-signal integrated circuits, poses a great source of challenges.
One obvious flaw of existing tools in the hardware domain is the lack of specification
language encompassing both features simultaneously. We began by describing how real-
time extensions of temporal logic and regular expressions can integrate naturally to
discrete-time specification languages, prolonging the work of [63] to digital assertions.
Contrarily to the majority of previous research in mixed-signal verification, primarily
focused on the integration of discrete and continuous aspects, we postulate that existing
real-time specification languages can be sufficient for the purpose of specifying continuous
and mixed behavior. This assumption is backed by previous research on Metric Temporal
Logic (MTL); we built upon results obtained in [95] and elsewhere in several ways.

First we extend the monitoring of temporal logic with a diagnostic procedure. That
procedure is original in the setting of simulation-based verification; it does not attempt
to explain the property violation other than by looking at the trace and the formula.
Second we improve on previous algorithms for the robust monitoring of Signal Temporal
Logic. The robustness of some specification relative to some trace is an indicator of the
distance to violation. Our algorithms have been used in numerous situations and form
the core of an efficient tool for the falsification of mixed-signal properties [44]. Third
we propose a monitoring procedure similar to that of MTL for the monitoring of Timed
Regular Expressions (TRE). The syntax of TRE is intuitive proceeding by simple extension
of classical regular expressions; the expressiveness of TRE is incomparable to that of MTL,
as witnessed by the ability of TRE to generate interleaved sequential and timing checks.
Having proposed aforementioned extensions, we feel that a solid base is available for
the specification of mixed-signal behaviors.

The monitoring of continuous or mixed-signal systems is not excursively concerned
with correctness. Performance values, confidence estimates or other quantitative indica-
tors are also routinely used (under the name of measurements) in analog verification. We
invented a declarative measurement language that is based on a decomposition between
behavior identification, using TRE, and aggregation of values, using simple continuous
operations. This measurement language is well suited for the specification of mixed-
signal properties, which feature both sequential conditions and continuous aspects. We
finally study the problem of further integrating analog and digital verification practice. In
this regard, previous research attempted to extend digital constructs towards continuous
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behavior but largely ignored the current practice in analog verification, which makes for
a reliable framework for the analysis of continuous behaviors. In opposition, we aimed at
importing analog measurements in a flexible way into the digital domain. Our solution
provides the basic architecture to convert measures into verification modules, classes,
tasks, and other digital constructs. This enables reusing analog verification artifacts in
digital verification environments, and further automate the checking of analog properties
throughout the development cycle.

Perspectives

Continuous-Time Signals We identified the opposition between asynchronous and syn-
chronous as the main differentiator between analog and digital circuits temporal behavior.
In order to treat asynchronous aspects we favored a continuous-time representation of
signals, and duration constraints based on interval of timing values. We argue this choice
allows to faithfully represent continuous systems as having a state defined at every time
instant. The use of a fixed sampling in standard assertion languages prevents the detec-
tion of errors occurring in between sampling points.

Symbolic Representation A key to analyzing continuous-time signals is to represent
timing values in a symbolic fashion. Symbolic techniques are used routinely in formal
verification, and in particular with Timed Automata and other real-time extensions of
finite-state systems [22]. We show that the same representation, namely that of zones can
be used profitably in the monitoring of TRE. We make the explicit comparison with MTL,
where the symbolic representation uses time intervals. Enhancements of MTL monitoring
that we consider use different symbolic representations. Robust monitoring is based on
piecewise-linear signals, while diagnostics relies on what we may call explanation signals,
which map time to implicants in a piecewise-algebraic fashion.

Inductive Procedures Our general solution to problems related to the monitoring of
temporal specifications proceeds inductively on the structure of the specification. This
requires first to identify the type of information required by the induction, for instance
the satisfaction set for temporal logic, the match set for regular expressions, and other
types of data represented symbolically as mentioned. Then the computation relies on one
procedure per operator in the specification language under consideration. This makes for
a simple approach, and on that can be reused for the solution of many related problems.
It would be straightforward in particular to extend robust monitoring and diagnostics to
TRE following such remarks.

Modularity and Approximation The advantage of algorithms working inductively on
the specification structure, is that they easily extend to accommodate new specifica-
tion operators. A limitation in the case of robustness and diagnostic computation, is
that by treating subformulas independently where they share atomic propositions, the
outcome ignores some logical dependencies. The quantitative semantics provides an
under-estimate of the distance to violation, while the diagnostic provides a small set of
segments causing the violation and not a minimal one.
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Complexity and Online Computation In the setting of simple monitoring, the outcome
of inductive computations is exact, but does not exploit the intricate temporal dependency
of some formula (respectively expression) over its subformulas (resp. subexpressions).
This does not affect the worst-case complexity of MTL monitoring algorithms. Computing
the entire match set of TRE however has a worst-case complexity super-linear in the length
of the trace. In order to guarantee linear complexity we can proceed instead inductively
on the “structure of time”, and compute the satisfaction each subexpression interval per
interval. We contributed to development of this principle, fully exposed in [111], and
obtain an online monitoring algorithm for TRE. Further investigations are needed to
provide a fully online approach to monitoring real-time extensions of digital assertions.

Interaction of Discrete and Continuous In our treatment of analog signals with declar-
ative measurements, we adopt the point of view according to which mixed-signal behav-
iors feature sequential aspects that are finite-state, and continuous aspects that aggregate
time or values via summation or maximum / minimum operations. The interplay of both
aspects could be subjected to further investigations in the line of [20]. In particular we
would like to define the composition of two measurements in this setting, by allowing
some real value computed by the first to be used in the definition of the second. In our
view the domain of mixed-signal measures is still lacking a simple, well-behaved compu-
tational model as a foundation as real-time systems do with timed automata, something
we would like to investigate further.

Future Measurements In order to improve existing verification technology in the spe-
cific context of mixed-signal circuits, we aimed at providing verification engineers with
tools usable in the setting of a digital testbench, yet providing the same guarantees as
established analog measurements algorithms. We followed the practice of analog mea-
surements, defined with a past temporal view in which the value of some measure at
time t corresponds to the prefix up to t. Note that a similar approach can be taken
for qualitative properties, and is another way to obtain online monitoring algorithms.
Further integration of measurements with existing assertions would require to consider
future-oriented quantitative properties. In that setting, the non-determinism that can
occur in measurements as we defined them, would need new techniques in order to be
resolved.
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Abstract This thesis is concerned with the monitoring of mixed-signal circuit simula-
tions. In this setting we make several theoretical and practical contributions as follow,
with particular emphasis in the area of timed specification languages. We give efficient
algorithms for computing the distance from some simulation traces to temporal logic
formulas. An original diagnostic procedure is provided for the systematic debugging of
such traces. The monitoring of continuous behaviors is also extended to other forms of
assertions based on regular expressions, forming the basis of our novel measurement
language. We then show how analog measurements can be implemented in existing
digital frameworks, overall extending current verification methodologies toward the
mixed-signal domain.

Résumé L’objet de cette thèse est le monitorage de simulation de circuit en signaux
mixtes analogique / digital. Dans ce contexte, et plus particulièrement dans le cadre
des langages de spécification temporisée, nous apportons les contributions théoriques
et pratiques suivantes. Nous proposons des algorithmes pour calculer la distance d’une
trace de simulation à une formule de logique temporelle. Une procédure originale est
donnée pour le débogage systématique d’une telle trace relativement à une formule de
logique temporelle. Le monitorage des comportements continus est ensuite étendu à
d’autres formes d’assertions, basées sur les expressions régulières, aussi à la base de
notre langage de description de mesures. Nous montrons enfin comment en général des
mesures analogiques peuvent être implantées dans l’environnement digital existant. Ce
faisant, étendons le champ d’application des méthodologies existantes aux circuits en
signaux mixtes.
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