Monitoring Temporal Logic with Clock Variables

Adrian Elgytutt, Thomas Ferrére, and Thomas A. Henzinger

IST Austria

Abstract. We solve the offline monitoring problem for timed propo-
sitional temporal logic (TPTL), interpreted over dense-time Boolean
signals. The variant of TPTL we consider extends linear temporal logic
(LTL) with clock variables and reset quantifiers, providing a mechanism
to specify real-time constraints. We first describe a general monitoring
algorithm based on an exhaustive computation of the set of satisfying
clock assignments as a finite union of zones. We then propose a specialized
monitoring algorithm for the one-variable case using a partition of the
time domain based on the notion of region equivalence, whose complexity
is linear in the length of the signal, thereby generalizing a known result
regarding the monitoring of metric temporal logic (MTL). The region
and zone representations of time constraints are known from timed au-
tomata verification and can also be used in the discrete-time case. Our
prototype implementation appears to outperform previous discrete-time
implementations of TPTL monitoring.

1 Introduction

Temporal logic monitoring [20] is a well-studied topic with multiple applications
[19,23,32,17]. A monitor is a program that verifies the conformance of a single
run of the system against the specification; generally speaking monitoring is one
of the methods for ensuring that a system meets its specification.! There are two
types of monitoring — online and offline. The online monitor runs simultaneously
with the system, and is suitable for use on a production system to enforce a
safety property of that system. The offline monitor verifies a trace of a finite
length after the system execution/simulation, and is thus suitable for use in a
testing scenario.

In discrete systems such as programs, behaviors can be formalized in linear
temporal logic (LTL) [30]. Temporal logic abstracts time into so-called temporal
modalities, such as always, denoted [, and its dual eventually, denoted ¢. As an
example, the typical property that every request p is followed by a grant q can
be written O(p — ¢ ¢). In real-time systems, or in the setting of asynchronous
communication, the specification not only talks of the temporal ordering of events,
but also of their temporal distance. One way to specify such a distance is to

! While temporal logic monitoring provides less guarantees than other formal methods
such as model checking, the range of applicability of monitoring techniques is wider
as it does not suffer from the infamous state-explosion: for monitoring purposes, all
that is needed from the system model is its ability to generate execution traces.

integrate timing constraints into temporal modalities, as done in metric temporal
logic (MTL) [25]. For instance, in MTL one can write {1 9) ¢ to specify a trace
where proposition ¢ holds eventually within 1 to 2 time units. Another way to
specify the temporal distance between events is to use dedicated variables. This
approach is advocated by [3] with the introduction of timed propositional temporal
logic (TPTL). In TPTL, timing and sequential aspects are made orthogonal by the
use of dedicated clock variables ranging over time, enabling the clean specification
of temporal objectives. A clock x is a real-valued variable that measures the time
elapsed from the temporal context of a formula to the temporal context of its
subformulas. For this one can use reset quantifiers x.p over a formula ¢, and
constraints of the form = < ¢ (or « > ¢) that compare the time elapsed from the
binding quantifier with some integer constant.?

Over an integer (discrete) time domain, timing constraints can be emulated
in LTL by nesting nezt-time operators, but such an encoding is cumbersome
and exponential in nature as durations are represented in unary. Over a real
(continuous) time domain, the next-time changes its meaning and one must use
dedicated logics such as MTL or TPTL in order to specify timing constraints.
In this setting, the one-clock fragment of TPTL is more expressive than MTL
[9,21]. To translate MTL operators into TPTL, we only need one clock variable,
with for instance Qo 1) p translating as . O(p A x < 1). TPTL timing constraints
may not translate to MTL when more than one temporal operator separates
quantifiers and bound constraints, as in formula z. O(p A O(g Az < 1)).

The efficient handling of time variables in monitoring tasks is an important
open problem, regardless of the underlying time domain. A practice similar to
TPTL is indeed recommended in the standard specification language SVA [34],
through the use of local variables of type time. SVA (or its simple subset [4])
can be used for model-checking, but is predominantly used in testing: simulation
traces are systematically monitored against SVA specifications. The state-of-the-
art online procedures for monitoring SVA incur an additional cost in the presence
of time variables, which they often treat by spawning a new instance of the
monitor at every possible variable assignment. To our knowledge, the complexity
of the offline monitoring problem for SVA has not been studied.

In this paper, we solve the offline TPTL monitoring problem over continuous-
time Boolean signals. The satisfaction of TPTL formulas can be characterized
in terms of difference constraints on their free variables [28]. In this setting, our
contribution is twofold. We first propose to compute such constraints in the
form of a union of zones. The zone data structure underlies recent advances
in continuous-time monitoring and pattern matching [33,6]. Our naive zone-
based implementation of TPTL monitoring appears competitive relative to the
existing discrete-time implementations for TPTL monitoring of [15], based on
instantiating LTL monitors for every possible value of clock variables. We then

2 The original presentation of TPTL instead talks of freeze quantifiers that store the
absolute time in variables x,y later compared using difference constraints y — x < c.
We found it more convenient to work with clocks and associated reset quantifiers as
in [31], although both presentations are equivalent.

propose to represent difference constraints using a partition of the time domain
according to the region equivalence. A region is a cell in this partition, and two
equivalent regions agree on the value of all subformulas. As for timed automata
verification [1], this equivalence relation provides a canonical representation of
the state space. The suitable inductive computation of this relation yields an
algorithm with linear-time complexity relative to the trace length for monitoring
the important fragment of TPTL formulas with one clock.?

The practical performance of our zone-based and region-based algorithms
is evaluated in a prototype implementation, which we compare with tool AMT
[29] as baseline. Our experiments support the theoretical complexity of the
region-based algorithm, which also compares to the zone-based algorithm.

Related Work Temporal logic monitoring over continuous time is introduced
by [26], who consider the logic MTL and its extension to real-valued signals called
STL. Subsequently, [33] proposes an algorithm for the monitoring and matching
of timed regular expressions (TRE) [5], that are regular expressions with duration
constraints (.); requiring that the segment matching the enclosed expression also
has a duration within some interval I. The work of [6] considers the monitoring of
MTL with an additional time parameter standing for the horizon of the property,
after which the signal is considered to end. The constructions in [33] and [6]
use a representation of the time domain as a union of zones, which we also
consider in our naive implementation of TPTL monitoring. A recent related
work [8] considers the monitoring of metric dynamic logic (MDL) formulas. This
logic introduces modalities (r);¢ requiring that ¢ should occur within timing
interval I after a sequence of discrete events matching some regular expression 7.
The authors consider a weakly-monotonic, discrete model of time and obtain an
algorithm with quasi-linear time complexity [8].

The decidability of TPTL offline monitoring over continuous-time domains
was proved in [28] with a tight (relative to combined trace and formula size)
reduction to difference constraints satisfiability. However, in the absence of
fast difference constraints solvers, this does not necessarily provide a practical
algorithm for large traces. In contrast our region-based algorithm comes with a
linear-time guaranteed complexity relative to trace length. To the best of our
knowledge, previous implementations of TPTL monitoring are as follows. The
approach of [15] uses a monitor of LTL formulas as sub-routine, called on every
possible valuation of time variables. This enables efficient monitoring of the
sequential part of the property by reusing off-the-shelf LTL monitors, but the
LTL monitor is called for every instantiation of clock variables. The number of
LTL monitor instances may grow linearly with the trace length, and as a result
this algorithm has a worst-case time complexity quadratic in the trace length
[15]. The approach of [12] proceeds by incremental rewriting of TPTL semantics,
based on formalization in Maude [13]. The resulting procedure seems to suffer
from similar complexity in terms of its number of rewrites.

3 This does not follow straightforwardly from [1], since TPTL does not translate to
timed automata: its satisfiability over dense time is undecidable [3].

2 Background

An essential idea in offline monitoring is that the standard (future time) operators
of LTL can be realized as backward-deterministic transducers. Therefore, the
whole trace can be parsed once in reverse time-order using finite memory. Let
us consider a discrete time domain T = {0, 1,...,n}. Assuming a set of atomic
propositions AP, a trace w is a function w : T — 247 that we denote w =
wowy ... w, with w; € AP for all i € T. The satisfaction relation of LTL can
be characterized by a recursion on the time dimension (backwards) and on the
formula structure (top-down). For the until operator we have:

base case: (w,n) = p1U @ iff (w,n) E v2;
inductive case: (w,i—1) = 1 U g iff (w,i—1) = @2, or (w,i—1) = ¢ and
(w, 1) = e1U 3.

Notice that the satisfaction = of ¢1U s at position ¢ only depends on the
satisfaction of 1 and o, at position ¢, and on the satisfaction of ¢ U o at i+ 1.

The LTL monitoring algorithm described in [19] first evaluates the subformulas
©1,92, - - -, m of the main formula ¢ at the end of the input trace w (position
n). Then for all i =n —1,...,0 the algorithm evaluates ¢1, pa, ..., @, at time i
in a bottom up fashion based on values computed at position ¢ and ¢ 4+ 1. The
overall process is illustrated in Figure 1.

p p p P -p p
—q -q - q g —q q
} } —— } } } i
0 1 2 3 4 5
v
SR 25t —p1 P1 -1
2R —p2 P2 P2
A3 ®3 ®3 —¥3
Xpgdi ey Pa —pa
t t t t t t 7
0 1 2 3 4 5

Fig. 1. Monitoring formula (Op V ¢) U —q with subformulas p1 = Op, 2 = Op Vg,
w3 = ~q, and 4 = (OpV q) U =g by backward induction. Positions 5,4, 3 have been
marked with satisfied subformulas, and the marking at position 2 is computed based on
input values of p and ¢, and the values of subformulas at positions 2 and 3.

Metric temporal logic (MTL) [25] extends LTL with timed temporal modalities
such as the timed eventually, denoted ¢ for timing interval I. Formula O, 5 ¢
holds at time ¢ if and only if ¢ holds at some time ¢’ € [t + a,t + b]. Here we
consider T = [0,d] C R to be a dense time domain. Similar to LTL, the truth
value of a given formula ¢ is uniquely determined at time ¢ by the truth value of
its main subformulas at times ¢’ > t.

The evolution of the truth value of a formula ¢ over time forms a Boolean
signal, that we call satisfaction signal, denoted w,[t] for input trace w. Monitoring

MTL offline can be done by computing the entire satisfaction signal of every
subformula of ¢ inductively, as proposed in [27]. For ¢;, the inductive step is as
follows. Assume that w, has value 1 over a finite set of intervals Tp,...,T, C T,
and value 0 everywhere else. Then wy, ,, will have value 1 over intervals 7; © I for
all i =0,...,n, and value 0 everywhere else.* For all inductive cases, satisfaction
signals can be computed in linear time [27]. We illustrate the resulting algorithm
in Figure 2.

~

Oo.2 |_| . l_l
Ola,51 9 ﬁ

Uo,212 = Q4,51 ¢

+ + t
0 2 4 6 8 10 12

Fig. 2. Monitoring formula ¢ = Ojg21p — Qp,5¢ by inductively constructing the
satisfaction signals if its subformulas. The segment of the satisfaction signal of ¢4 5 q
between times 5.5 and 7 is obtained from the segment of ¢ between times 10.5 and 11.

3 Timed Propositional Temporal Logic

We call time domain a subset T C R of the real line of the form [0, d] with
duration d > 0. Assume a set AP of propositional variables. A trace w : T — 24F
can be seen as a valuation of variables p € AP into Boolean signals over T, which
we write wy, : T — {0, 1}. The Boolean value of p at time ¢ in trace w is denoted
wp[t]. The length of trace w is the minimal size of any partition of T into intervals
over which the truth status of predicates w, is constant relative to time for all
p € AP. We assume that every trace has a finite length denoted |w].

Let X be a set of clock variables. An environment r is a valuation of clocks
x € X as elements of the time domain, written r, € T.

Definition 1 (TPTL Syntax). Formulas of TPTL are given by the following
grammar:

pu=ple<clzzc|lploVeleUe|ry
for p € AP, clock variables x € X, and integer constants ¢ € IN.

* The Minkowski difference T; © I is by definition {t —s € T : t € T; and s € I'}.

We also use shorthands such as @ < ¢ for (2 > ¢). The form ‘z.” in the formula
x. is called a reset quantifier and a formula is closed when all its variables are
bound by a reset quantifier.

Definition 2 (TPTL Semantics). The satisfaction of a TPTL formula ¢
relative to a trace w at time t under an environment r is according to the relation
= between the tuple (w,t,r) and @, inductively defined as follows:

(JEDP iff wplt] =1

(J=x<e iff t—r, <c

(i) b-e i (whr) g

(wir)eve i (wtr) e or (w i) o

() E U iff (w,t',7) =1 for some t' >t such that
(w,t",r) = ¢ for all t" with t <t" <t

(w,t,7r) =z i (wirlret) Ee

where r[x < t] is the environment that assigns t to x and agrees with r for every
other clock. For any closed formula ¢ it holds (w,t,7) = ¢ iff (w,t,r") = ¢ for
all environments v, and thus we simply write (w,t) |E ¢ in that case. We say
that w satisfies ¢, written w = @, when (w,0) = .

A clock variable x intuitively stands for the time elapsed from the temporal
context of its binding reset quantifier. Observe that reset quantifiers commute
with Boolean operators, that is, z.(p V ¥) & 2.0 V 2.4 and x.—p & —x.0. We
refer the reader to [3] for a more extensive discussion of the merits of reset (or
freeze) quantification over existential and universal quantification in the temporal
logic context.

The offline monitoring problem for TPTL, which we solve in this paper, can
be stated as follows: given a formula ¢ and a trace w, decide whether w = .

4 Zone-based Algorithm

Assume a finite set X = {z1,..., 2} of clocks with size k, and let T = [0, d]
be a time domain with duration d. With any TPTL formula ¢ and trace w we
associate a satisfaction set, consisting of all pairs (¢,) under which w satisfies .
For convenience we hereafter identify such time-environments pairs (¢, r) with
vectors in T**+! whose first component is the value of the reference time, followed
by the values of the clocks in X.

Definition 3 (Satisfaction Set). Let ¢ be a formula and w a trace. The
satisfaction set of ¢ relative to w, denoted [¢], is defined by letting

[elw = {(t,7) € T = (w,t,7) = ¢}

Difference constraints are formulas of the form ¢ < a and t — s < a for compar-
ison operator 1 € {<,<,>, >}, constant a, and real variables s, t. Satisfaction

sets [¢]w are definable in the first order theory of difference constraints. This
theory is decidable, in particular it admits quantifier elimination [24].

Since the translation of TPTL into difference constraints can easily be made
effective, a monitoring procedure for TPTL can be obtained by constructing a
difference constraints formula that holds iff w = ¢, combined with a decision
procedure for the first order theory of difference constraints [28]. Such an algorithm
is likely to exhibit an exponential time complexity, since the problem of deciding
a difference constraints formula is complete for polynomial space computations
[24]. We have no hope on improving the worst-case complexity relative to the
combined input size of formula and trace, given that TPTL monitoring requires
polynomial space [28], already over discrete models [16]. However, we hope to
reduce the complexity relative to the size of the trace alone. For this we use a
polyhedral representation of the satisfaction set.

Definition 4 (Zone). A zone is a subset of Tt definable as a conjunction of
difference constraints.

Zones were introduced in the context of real-time systems verification, in partic-
ular in the formal analysis of timed automata [14]. The following theorem, an
immediate consequence of the discussion above, underpins our first algorithm:

Theorem 1. For any trace w and formula ¢, the set [p]w can be effectively
represented as a finite union of zones.

Given a formula ¢ and trace w the set [¢],, can in particular be obtained by
induction as follows.

— Propositional variables: The satisfaction set is a union of zones orthogonal to
the time axis, of the form [p],, = U, Ji x T*.

— Timing constraints: The satisfaction set consists is the zone [z > c],, =
{(t,r) € T+ : ¢t —r,xc}.

— Boolean operators: Disjunction and negation translate into the corresponding
set operations [-¢], = T\ [¢]w and [V Y]w = [@]w U [¥]w-

— Until: Assume [¢],, and [¢],, are given as sets of zones Z, and Z,;, respec-
tively. We compute zones of [U], by constructing the sequence)y, ...,V
up to a fixed point n as follows:

%
Yo = {CZL(Z) N CZR(Z) nNY :YeZ,,Zc th}
in{ClL(Z)mgﬂY : Yeyi_l,ZeZq,} fori>0

where clj, (respectively clr) take the topological closure of a zone to the left

(respectively to the right) on the time component, and ? removes all lower
bounds on the time component.® We then have [oU ¢],, = I, Vi.

— Reset: We let [z.¢], = {(t,r) € T**! : 3s (t,r[r, < s]) € Z} for
Z = [¢]wn{(t,r) € TF* : t —r, = 0}). All operations involved in this
computation commute with U and are standard operations over zones.

5 The fixed point UY,11 C U:L:O YV: exists because only finitely many difference
constraints over T can be built from Z, and Zy.

Ezample 1. We consider the formula ¢ = z. O(pAQ(¢Az < 1)). It has subformulas
P, r<1l,1n=qgANx<1,7%2=07,73=pA7Y2, 71 =073, with p =z.94. In
Figure 3 we show the satisfaction sets of each of its subformulas. Observe that
the satisfaction of ¢ is independent of r.

Te Tx
3
q 9 E p
<1 E s
m 11 Zhsiss B
s
=RE ki 18 R
e
. 0 e % .
0 1 2 3
P L
q
f } } } t f } } } t
0 1 2 3 0 1 2 3

Fig. 3. Computation of the satisfaction set of formula ¢ on a given trace by structural
induction: (left) satisfaction sets of subformulas ¢, z < 1, 71, and v2; (right) satisfaction
sets of subformulas p, 3,74, and .

For a fixed formula, the worst-case run time of this algorithm is polynomial
relative to the trace length. Yet it can be more than linear. The expensive
operation of complementation can be avoided by introducing a negation normal
form through additional operators of conjunction and always (the dual of until
can be rewritten using always and until itself). However intersecting two sets of
zones can still create a quadratic number of zones. Such a phenomenon can arise
when monitoring TPTL with the algorithm in this section.

Ezample 2. Consider the formula) = pAO(pAx = 1), and the family of periodic
Boolean signals w,,, n > 0 with fixed duration d = 2 and period %7 such that
wy[t] = 1 if and only if | .t | is even. The satisfaction set [¢].,, has £2(n?) zones
while signal w,, has O(n) time points (discontinuities).

5 Region-based Algorithm

In this section we improve on our zone-based algorithm by moving to a represen-
tation of satisfaction sets using a notion of region equivalence. For simplicity we
focus on the fragment of TPTL with only one clock variable x, which we denote
1-TPTL in the rest of this paper.

5.1 TPTL Formulas with One Variable

Under the present definitions, 1-TPTL is already more expressive than MTL [9].
Given a time variable x and an integer-bounded interval I, let us write = € I for
the conjunction of constraints enforcing that the value of x lies in 1. We can define
the timed until operator U as the abbreviation pU; ¢ = z.(pU(x € T A Y)).
Metric Temporal Logic (MTL) can be seen as the syntactic fragment of TPTL
with the grammar ¢ :=p | o | ¢ V¢ | U ¢ for p ranging over AP and [
ranging over integer-bounded intervals.

The 1-TPTL formula ¢; = O(p — 2. O(g A O(r Az < 5))) was conjectured
in [2] not to be expressible in MTL. The property specified by ¢ is that every
request, signified by p holding true, should be followed by two successive grants
occurring within 5 time units, respectively signified by ¢ and r holding true.
It turns out that ¢; can be expressed in MTL [9], but not when replacing the
constraint z < 5 by x < 1 and assuming integer constants [21]. When allowing
rational constants and past operators, MTL, 1-TPTL, and TPTL all become
equivalent in expressive power [22].

Observe that formulas of 1-TPTL can contain multiple occurrences of clock
variable z, as in o = O z.(pU(z > 1 Az.(qU(rUxz > 2 Az < 3)))). Formula ¢
expresses that eventually p holds for more than 1 time unit, after which ¢ holds
and then r holds over a period lasting between 2 and 3 time units. It could also
be written as O z.(pU(z > 1 Ay.(qU(rUy > 2Ny < 3)))) for readability’s sake.’

5.2 Region Equivalence

To improve the worst-case complexity relative to the trace length, we introduce two
essential changes in the algorithm of Section 4. We avoid overlapping polytopes,
leading to combinatorial explosion, by using a grid over the 2-dimensional time
domain. The number of cells (called regions) in the grid can still be more than
linear in the trace length, as in Example 2. Instead of representing the whole set
of zones explicitly, it suffices to construct this set implicitly and according to
some equivalence relation. The state is maintained over a single uniform interval
on the t-axis, where the input trace stays constant. Over such an interval, the
truth value of a formula only depends on the environment and for convenience
we will represent it as a signal on the r-axis.

Let w be a trace with time sequence 0 = t,...,t, = d and ¢ a formula with
time constants cy, ..., ¢ and letting ¢g = 0 and ¢; 11 = +00. We write rg, ..., 7y
for the ordered sequence of times in T each of the form ¢; — ¢; obtained by
considering all pairs of ¢; and ¢; for i =0,...,nand j=0,...,[.

Definition 5 (Region). A region relative to w and ¢ is a subset of T? of the
form {(t,r) e T x R : t—r € I} where T is of the form {t;} or (t;,ti+1), R is
of the form {r;} or (r;j,rj+1), and I is of the form {cy} or (ck,cr+1). We call T

5 Similar formulas with independent variables were considered in [15] in the context
of monitoring. We remark that the fragment of TPTL defined there corresponds to
1-TPTL when clocks are renamed.

the projection of that region on the t-axis, and if T # {d} we call successor the
region {(t,r) € T" x R : t —r € I} where T’ is adjacent to T on the right.

Definition 6 (Equivalence). We say that two regions A and A" are equivalent
relative to w and ¢, denoted A ~ , A', when the following conditions apply:

— A and A’ have the same t-azis projection;

— the satisfaction status of subformulas of ¢ relative w are the same on both A
and A’;

— if A and A’ have successors B and B’ then the satisfaction status of subfor-
mulas of ¢ relative to w are the same on both B and B’.

Let ¢ be a quantifier-free” formula, and let w be a trace. The following
proposition is straightforward by structural induction:

Proposition 1. For all regions A and A’ such that A ~,, A’ and time-
environment pairs (t,r) € A and (t',7") € A" we have (t,7) = ¢ iff (t',7") = ¢.

In order to compute the satisfaction set of a quantifier-free formula ¢, time-

environment pairs that lie in regions equivalent to ~, ., can be grouped together.

Parsing the trace in reverse time-order, the number of operations per uniform

time interval needed to update equivalence classes of ~, ,, remain bounded.
For quantified subformulas we use the following notion:

Definition 7 (Satisfaction Signal). The satisfaction signal w, of a closed
formula ¢ on a trace w is a Boolean signal such that w,[t] = 1 if (w,t) = ¢,
wy[t] = 0 otherwise.

The satisfaction signal of some formula x.p can be obtained by intersecting
the satisfaction set of ¢ with the diagonal ¢ = r. Observe that in general, the
satisfaction signal of a closed subformula is sufficient information to construct the
satisfaction set of its superformulas. Applying the region equivalence to formulas
with quantifiers will be made possible by incrementally replacing quantified
subformulas with their satisfaction signal.

5.3 Monitoring Algorithm

For a given formula ¢ and a trace w, the region-based algorithm computes the
satisfaction signal of every subformula of the form .7y, starting with inner-most
ones (such that v is quantifier-free). The computation of the satisfaction signal
of such a subformula x.v is done by parsing the trace backwards and computing
the satisfiability of its subformulas in each region, in a procedure similar to LTL
monitoring. The satisfaction signal w, ~ is found on the diagonal and obtained

7 A more general definition of region equivalence could be used. Our restriction of this
notion to quantifier-free formulas is motivated by efficiency concerns. For instance, we
aim to avoid partitioning the satisfaction set of formula z. ¢(z < 1ApAz. O(z < 2Aq))
according to timing constant 1 + 2 for all subformulas. While the constant is relevant
in subformula O(z < 1ApAz. Oz < 2Aq)), it plays no role in O(z < 2 A q).

by letting w,[t] = 1 if (¢,t) € [¢]w. Indeed we only need to compute the part of
the satisfaction set with » < ¢. Once computed, the subformula x.7 is replaced by
a fresh proposition p, -, and its satisfaction signals is added to the trace w. The
satisfaction signal associated to that proposition will be used when computing
superformulas, similar to MTL monitoring. Once the main formula ¢ has been
replaced by an atomic proposition p,, we can conclude whether w satisfies ¢
by simply looking at the value of w,, at time 0. We assume without loss of
generality that the closed formula ¢ we monitor is of the form x.1, if this was
not the case we could rewrite it as x.p, which is equivalent since ¢ is closed.

Algorithm 1 Monitor

Precondition: A formula ¢ = z.9, a finite trace w
1: function MONITOR(p, w)

2 if 1 contains x.7y such that ~ is quantifier-free then

3 v < SATISFY(z.7y, w)

4 replace z.7 by p.., in ¢

5: w4 wU (Pg.y — V)

6: return MONITOR(p, w)

7

8

9

0:

else
return SATISFY(p, w)
end if

10: end function

As described, Algorithm 1 recursively searches for a subformula that does not
contain any reset quantifier (lines 2, 6) until no further reset quantifiers can be
found (line 8). In that case, the algorithm proceeds by computing the satisfaction
signal of the found subformula by calling Algorithm 2 (line 3) and replacing it
with a fresh atomic proposition p, (line 4) and in addition, supplementing the
trace with a Boolean satisfaction signal v for this proposition p, -, (line 5). For a
formula z.¢ where ¢ is quantifier-free and a trace T — 247 we compute Wy, Dy
calling Algorithm 2.

Algorithm 2 implicitly computes the satisfaction set of all quantifier-free
subformulas of ¢. For simplicity, it is written and described to operate over regions
rather than region equivalence classes, but operating over a single representative
of each region equivalence class can easily be implemented (e.g. by keeping track of
regions entering and leaving every diagonal area of the ¢,r plane). The algorithm
starts by initializing the output trace u. Signals in the output trace represent
the satisfiability of subformulas at different environment values. The function
INITIALIZESATTRACE creates m signals in the output trace u, one per subformula
of v, with time points 0, ¢,,, and ¢, — ¢ for every ¢ € C. The values of those
satisfaction signals are computed based on the signal values of w at time ¢,,. As
we iterate over the trace (line 3), we first refine u (lines 4, 5) and we update the
output trace backwards (line 7). We proceed by computing the regions relative
to w contained within T" = [t;,%;41) and R = (rj,7j41) (line 8). The function
UPDATEREGIONS then only needs to compute the time constants relevant to the

Algorithm 2 Satisfy

Precondition: A formula z.v such that v is quantifier-free, a trace w on [0, ty]

1: function SATISFY(z.7y,w)

2 U, 4 INITIALIZESATTRACE(w, tn, C) > r stores all time points of u
3 for t; € tp,—1,...,t0 do

4 7' 4= (11,...,7|c|) where 1] :=t; — ¢, for all 1 <1 <|C]|

5: r < merge(r, 1) > merge two lists
6 k + largest element of r smaller than ¢;41

7 for r; € ri,...,ro do

8: A, A" < UPDATEREGIONS(¢;,ti4+1,75,Tj+1,C) > open interval
9: for Be A',...,Ado

10: u < UPDATESATTRACE(w, u,Tj,7j+1, B)

11: end for

12: A, A" « UPDATEREGIONS(¢;, tit+1,7;,C) > closed interval
13: for B A,...,A' do

14: u < UPDATESATTRACE(w, u,;, B)

15: end for

16: end for

17: end for

18: return uz.- > satisfaction signal of x.y

19: end function

intervals T and R, i.e. time constants c such that ¢t; < ¢+ r; < ;4. Iterating
backwards through the computed regions (for B = A’,..., A), we compute the
satisfiability in each region inductively on the structure of the formula (function
UPDATESATTRACE, line 10) and update u once we have processed the region
A. The function UPDATESATTRACE updates the respective signals of u at time
(rj,mj4+1) based on subformulas ; of x.7. For instance in the case of v, = v, U i
over a region whose t-projection is open, we update the signal ., with the value
of Uy, A (Uy, Vul, Vul,), where u' is the value of u in the adjacent region to
the right. Over a region whose t-projection is closed, the value of until is the
same as in its successor region. Other operators not pose any difficulty. After we
have processed the region A, we update u. We repeat the same inductive rules
for the regions bounded by T' = [t;,t;41) and R = {r;}. After each iteration ¢,
the interval [t;,t;11) of the output trace u is finalized and will remain unchanged
until the end of computation, at which point we return the Boolean component
of u representing the satisfaction signal of the whole formula z.7.

Ezample 3. We take again the formula ¢ = z. O(pAO(gAz < 1)) with subformulas
pgr<lm=qhz<1,7%=0m,7=pA%,and 34 = O3 of Example 1
and illustrate the computation of its satisfaction signal in Figure 4.

When instead computing only one representative of each equivalence class
of ~, 4, we limit the number of operations to O(2¥) per uniform time interval
for a subformula of size k, since there are at most 2% equivalence classes of ~yw
over such an interval. The number of time points at most doubles with each time

+3

| +2

t SH D‘ — = I m N -0
v ¢ ¢ & &

~

Fig. 4. Computation of the satisfaction signal of ¢ on a given trace. The state of the
algorithm consists of the truth value of regions highlighted on the left; it is shown on the
right as signals with a dotted part being updated and a plain part, final. The current time
interval is ¢; = 1.8, ;41 = 2.2 and current region is {(r,t) : t; < ¢,7 < tiz1—1,t—r < 1}.

constant, so that the satisfaction signal of w, - has length at most n2* for a
signal w of length n. Therefore we have:

Theorem 2. The offline monitoring of a 1-TPTL formula ¢ of size m against
a continuous-time Boolean trace w of length n can be computed in time n2°("™).

6 Experimental Evaluation

We implemented both algorithms in C++. The implementation of the zone-based
algorithm uses a library of the toolset IF [10] for zones computations. We then
measured the execution time of monitoring several formula/trace combinations.
Figures were obtained on Intel Core 15-4210u CPU with 8 GB of RAM. The input
traces we considered consist of periodic Boolean signals, in which propositions
p,q,7,... hold for 2 time units in turn. The length of a trace is determined by
the number of sample points (associated to a Boolean signal changing its value).
We generated traces of length 1000, 2000, 5000, 10000 and 20000 samples.

In a first experiment, we evaluate our region-based implementation on formulas

pr=0x.(p— OlgAO(x <5AT)))
o= 0z (pU(x > 1Az (qU(rUz > 2Nz < 3))))
ps=0z.(p =0z <1AgAz.0O@ <1— 1))
pa=0z.(p— (OlqUr)ANO(x >3ANx <5AS)))
w5 = (. 0(x <10 A p))UTO—g.

Formula ¢; and ¢y are two examples given in Section 5. Formula (3 specifies
that whenever p holds, g should hold within 1 time unit and r should not hold for
another 1 time unit from there on. Formula ¢4 requires that every occurrence of
p is followed by ¢ holding until an occurrence of r, and an occurrence of s within
3 to 5 time units. Formula 5 roughly says that p holds at least once every 10
time units until g stops holding.

Then, we evaluate our zone-based implementation against the same formulas
and formula ¢ = z.(p — O(gAy.O(x < 5Ay > 2Ar))). The property
expressed by g is that every request p is followed by two grants ¢ and r within
5 time units, with ¢ occurring at least 2 time units before r. Such a property
cannot be monitored by the region-based implementation since it requires two
clock variables.

We use the tool AMT [29] for MTL monitoring over continuous-time Boolean
signals as our baseline. Formulas @3 and @5 are part of the MTL syntactic
fragment of TPTL, and can be rewritten in MTL as O(p — Opo,17(g A Ojo,1) 7))
and (Qpo,10 p) U 0 =g, respectively.®

Table 1. Execution times (s) of monitoring formulas against periodic traces for three
algorithms: our region-based (reg) and zone-based (zon) implementations, and the
interval-based (int) implementation of MTL monitoring in the tool AMT.

Jw| 1000 2000 5000 10000 20000

alg int reg zon int reg zon int reg zon int reg zon int reg zon

©1 — 0.045 0.085 — 0.084 0.168 — 0.217 0.431 — 0.439 0.960 — 0.898 2.105
©2 — 0.110 0.059 - 0.160 0.132 — 0.407 0.370 - 0.8140.739 — 1.660 1.498
@3 0.034 0.104 0.032 0.047 0.169 0.077 0.079 0.431 0.173 0.143 0.894 0.344 0.275 1.822 0.644
©4 - 0.132 0.087 -~ 0.259 0.268 - 0.662 0.632 - 1.348 1.416 - 2.756 3.015
@5 0.025 0.080 0.040 0.035 0.159 0.151 0.055 0.398 0.366 0.092 0.802 0.783 0.173 1.636 2.235
©e - - 0.242 - - 0.390 - - 1.001 - - 2111 - - 5.009

The results are shown in Table 1. We observe that the zone-based algorithm
matches closely the linear-time guaranteed performance of the region-based
algorithm, and is sometimes faster. This is achieved by internally keeping zones
ordered on the time axis to avoid otherwise quadratic implementation of binary
operations such as intersection, see [33]. For large signal sizes the performance
degrades, subject to an implementation limitation of IF (the use of a hash table
for zones). The interval-based monitoring algorithm of AMT displays a speed
advantage of up to 10x when monitoring formulas 3 and 5.

In a second experiment, we consider the scalability of our region-based algo-
rithm relative to trace and formula dimensions. To demonstrate the impact of the
number of operators in the formulas, we consider the family o7 = O x.(p1 Az < 2),
o2 =Qx.(prUp2 Az < 4)),uptoos =0z.(prUpU ... U(ps Az < 10)...)). To
demonstrate the impact of the number of constants in the formula, we consider

8 Formula ¢, could also be put in MTL form using some additional rewriting, but is
not part of the MTL syntactic fragment of TPTL we defined.

= 0 A 20K
GEJ QEJ 08 @ 10K
= 5 0.6 0 5K
c
.g ,§ 0.4 & 2K
3 302 © 1K
5 X
w O T Y T T
0O 1 2 3 4 5
Trace length (1K samples) Number of temporal operators
—A- p5
Z 2l e z 5
g O p3 v -4 20K
SL5 1 o E s * 10K
c
2 1+ o n s 4 ./././'/' o 5K
=1 g & 2K
9 o
X 0.5 1 205 M/D/D o 1K
i}
0 + + + + 0
012 5 10 20 0O 1 2 3 4 5
Trace length (1K samples) Number of time constants

Fig. 5. Execution time for: (left) traces of increasing length; (top-right) formulas of
increasing size; (bottom-right) formulas with increasing number of time constants.

the family p; = Ox.(pg = O(p1Ax < EAQ(pa Az < A AO(psAz < ct)...)))
fori=1,...,5withconstantsc} =cl =...=ct =10; 3 =8,c3 = ... = ¢ = 10;
up to ¢ =2,¢3 =4,...,c2 = 10. Formulas o; contain an increasing number of
until operators, while formulas p; contain an increasing number of time constants.

The results are shown in Figure 5. In the left-hand side we confirm that the
execution time is linear relative to the length of the trace for a fixed formula.
In the right-hand side we see that as the size of the formula, or its number of
constants increases, the execution time appears to grow only slightly faster than
linearly. This is expected over traces with bounded variability. More realistic
benchmarks would be needed in order to fully assess the practical behavior of our
algorithm relative to formula dimensions. Its asymptotic behavior in that respect
is only of relative interest, given that beyond a handful of temporal operators or
time constants, formulas quickly become less intelligible.

7 Conclusion

We demonstrated how the offline monitoring of temporal logic with real-valued
clock variables can be made to scale with the trace length. In the future, we
would like to investigate the monitoring problem for logics with other forms
of quantification such as first-order [7,18], or freeze quantification over signal
values [11]. Efficient monitoring of such logics would be of practical interest.

Acknowledgements This research was supported in part by the Austrian
Science Fund (FWF) under grants S11402-N23 (RiSE/SHINE) and Z211-N23
(Wittgenstein Award).

References

10.

11.

12.

13.

14.

15.

16.

Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer
science, 126(2):183-235, 1994.

. Rajeev Alur and Thomas A Henzinger. Logics and models of real time: A survey.

In Workshop/School/Symposium of the REX Project (Research and Education in
Concurrent Systems), pages 74-106. Springer, 1991.

Rajeev Alur and Thomas A Henzinger. A really temporal logic. Journal of the
ACM (JACM), 41(1):181-203, 1994.

Roy Armoni, Dana Fisman, and Naiyong Jin. SVA and PSL local variables—a
practical approach. In International Conference on Computer Aided Verification,
pages 197-212. Springer, 2013.

Eugene Asarin, Paul Caspi, and Oded Maler. Timed regular expressions. Journal
of the ACM, 49(2):172-206, 2002.

Eugene Asarin, Dejan Nickovic, Oded Maler, and Dogan Ulus. Combining the tem-
poral and epistemic dimensions for MTL monitoring. In International Conference
on Formal Modeling and Analysis of Timed Systems. Springer, 2017.

David Basin, Felix Klaedtke, Samuel Miiller, and Eugen Zalinescu. Monitoring
metric first-order temporal properties. Journal of the ACM (JACM), 62(2):15,
2015.

David Basin, Srdan Krsti¢, and Dmitriy Traytel. Almost event-rate independent
monitoring of metric dynamic logic. In International Conference on Runtime
Verification, pages 85—102. Springer, 2017.

Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. On the expressiveness
of TPTL and MTL. In International Conference on Foundations of Software
Technology and Theoretical Computer Science, pages 432—443. Springer, 2005.
Marius Bozga, Jean-Claude Fernandez, Lucian Ghirvu, Susanne Graf, Jean-Pierre
Krimm, and Laurent Mounier. IF: A validation environment for timed asynchronous
systems. In International Conference on Computer Aided Verification, pages 543—
547. Springer, 2000.

Lubos Brim, P Dluhos, D Safrének, and Tomas Vejpustek. STL*: Extending signal
temporal logic with signal-value freezing operator. Information and Computation,
236:52-67, 2014.

Ming Chai and Holger Schlingloff. A rewriting based monitoring algorithm for
TPTL. In International Workshop on Concurrency, Specification and Programming
(CSEP), pages 61-72, 2013.

Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso Marti-Oliet,
José Meseguer, and José F Quesada. Maude: Specification and programming in
rewriting logic. Theoretical Computer Science, 285(2):187-243, 2002.

D. L. Dill. Timing assumptions and verification of finite-state concurrent systems.
In Proceedings of the International Workshop on Automatic Verification Methods for
Finite State Systems, pages 197-212, New York, NY, USA, 1990. Springer-Verlag
New York, Inc.

Adel Dokhanchi, Bardh Hoxha, Cumhur Erkan Tuncali, and Georgios Fainekos. An
efficient algorithm for monitoring practical TPTL specifications. In International
Conference on Formal Methods and Models for System Design (MEMOCODE),
pages 184-193. TEEE, 2016.

Shiguang Feng, Markus Lohrey, and Karin Quaas. Path checking for MTL and
TPTL over data words. In International Conference on Developments in Language
Theory, pages 326-339. Springer, 2015.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Harry Foster. Assertion-based verification: Industry myths to realities (invited
tutorial). In Computer Aided Verification, pages 5-10. Springer, 2008.

Klaus Havelund, Doron Peled, and Dogan Ulus. First order temporal logic moni-
toring with BDDs. Formal Methods in Computer-Aided Design FMCAD 2017, page
116, 2017.

Klaus Havelund and Grigore Rogsu. Monitoring java programs with java pathexplorer.
Electronic Notes in Theoretical Computer Science, 55(2):200-217, 2001.

Klaus Havelund and Grigore Rogu. Synthesizing monitors for safety properties. In
Tools and Algorithms for the Construction and Analysis of Systems, pages 342—356.
Springer, 2002.

Yoram Hirshfeld and Alexander Rabinovich. Expressiveness of metric modalities
for continuous time. In Computer Science—Theory and Applications, pages 211-220.
Springer, 2006.

Paul Hunter, Joél Ouaknine, and James Worrell. Expressive completeness for metric
temporal logic. In Proceedings of the 2013 28th Annual ACM/IEEE Symposium on
Logic in Computer Science, pages 349-357. IEEE Computer Society, 2013.
Moonzoo Kim, Mahesh Viswanathan, Sampath Kannan, Insup Lee, and Oleg
Sokolsky. Java-mac: A run-time assurance approach for java programs. Formal
methods in system design, 24(2):129-155, 2004.

Manolis Koubarakis. Complexity results for first-order theories of temporal con-
straints. In International Conference on Principles of Knowledge Representation
and Reasoning (KR), pages 379-390, 1994.

Ron Koymans. Specifying real-time properties with metric temporal logic. Real-time
systems, 2(4):255-299, 1990.

Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous
signals. In Joint International Conferences on Formal Techniques, Modelling and
Analysis of Timed and Fault-Tolerant Systems (FORMATS/FTRTFT), pages 152—
166, 2004.

Oded Maler and Dejan Nickovic. Monitoring properties of analog and mixed-signal
circuits. STTT, 15(3):247-268, 2013.

Nicolas Markey and Jean-Francois Raskin. Model checking restricted sets of timed
paths. Theoretical Computer Science, 358(2-3):273-292, 2006.

Dejan Nickovic, Olivier Lebeltel, Oded Maler, Thomas Ferrére, and Dogan Ulus.
AMT 2.0: Qualitative and quantitative trace analysis with extended signal temporal
logic. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 303—-319. Springer, 2018.

Amir Pnueli. The temporal logic of programs. In Annual Symposium on Foundations
of Computer Science, SFCS ’77, pages 46-57, Washington, DC, USA, 1977. IEEE
Computer Society.

Jean-Francois Raskin. Logics, Automata and Classical Theories for Deciding Real
Time. PhD thesis, Université de Namur, 1999.

Volker Stolz and Eric Bodden. Temporal assertions using AspectJ. Electronic Notes
in Theoretical Computer Science, 144(4):109-124, 2006.

Dogan Ulus, Thomas Ferrére, Eugene Asarin, and Oded Maler. Timed pattern
matching. In International Conference on Formal Modeling and Analysis of Timed
Systems, pages 222-236. Springer, 2014.

Srikanth Vijayaraghavan and Meyyappan Ramanathan. A practical guide for
System Verilog assertions. Springer Science & Business Media, 2005.

	Monitoring Temporal Logic with Clock Variables

