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Abstract8

The monitoring of event frequencies can be used to recognize behavioral anomalies, to identify trends,9

and to deduce or discard hypotheses about the underlying system. For example, the performance of10

a web server may be monitored based on the ratio of the total count of requests from the least and11

most active clients. Exact frequency monitoring, however, can be prohibitively expensive; in the12

above example it would require as many counters as there are clients. In this paper, we propose13

the efficient probabilistic monitoring of common frequency properties, including the mode (i.e., the14

most common event) and the median of an event sequence. Our main contribution is an algorithm15

that, under suitable probabilistic assumptions, can be used to monitor these important frequency16

properties with four counters, independent of the number of different events. Our algorithm samples17

longer and longer subwords of an infinite event sequence. We prove the almost-sure convergence of18

our algorithm by generalizing ergodicity theory from increasing-length prefixes to increasing-length19

subwords of an infinite sequence. A similar algorithm could be used to learn a connected Markov20

chain of a given structure from observing its outputs, to arbitrary precision, for a given confidence.21
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1 Introduction25

The safety and security of computerized systems are ensured by a chain of methods that26

enables via the use of logic and formal semantics to assert and check the correct operation27

of system, real or simulated. Runtime monitoring [4] happens at the end of this chain28

and is employed as a complement to rigorous design and verification practices to catch29

malfunctions as they occur in a live system. In addition to critical functional aspects,30

softer performance metrics also need to be monitored to ensure a suitable quality of service.31

Monitoring system properties takes place in parallel with the execution of the system itself.32

A dedicated component, called monitor, is employed to observe the system behavior as input33

and generate a verdict about the system behavior as output. Due to reactivity considerations,34

the monitor is often required to perform its observations in real-time, and not being the35

main computational artifact, should consume limited resources.36

In this paper we propose a formal language for describing quantitative properties based on37

frequencies, and study study their monitoring problem. While all such frequency properties38

are theoretically monitorable using counter registers, we do not know of efficient algorithms39

in the case of large or infinite input alphabets. As a motivating example we use the mode40

of a sequence over a finite alphabet Σ. By definition, a ∈ Σ is the mode of an ω-word w if41

there exists a length n such that each prefix of w longer than n contains more occurrences of42

a’s than occurrences of any other letter b ∈ Σ. This frequency property can be monitored43

using a separate counter for every event in Σ. However the alphabet Σ is typically too large44
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for this to be a practical model.1 We show that there is no shortcut to monitor the mode45

exactly and in real time: in general |Σ| counters are needed for this task.46

However, we are not always interested in monitoring exactly and in real time the mode after47

every new event, and sometimes wish to estimate what the mode is expected to be in the future.48

Perhaps surprisingly, we can then do much better. Let us assume that the past, finite, observed49

behavior of an event sequence is representative of the future, infinite, unknown behavior.50

This is the case for stochastic systems, for instance if the observation sequence is generated51

by a Markov chain. We move from the real-time monitoring problem, asking to compute or52

approximate, in real time, the value of a frequency property for each observed prefix, to the53

limit monitoring problem, asking to estimate the future limit value of the frequency property,54

if it exists. In particular, for the mode of a connected Markov chain, the longer we observe a55

behavior, the higher our confidence in predicting its mode. While every real-time monitor can56

be used as limit monitor, there can be limit monitors that use dramatically fewer resources.57

We present a simple, memory-efficient strategy to limit monitor frequency properties58

of random ω-words. In particular, our mode monitor uses four counters only. Two of the59

counters keep track of the number of occurrences of two letters at a time. The first letter is60

the current mode prediction, say a. The second letter is the mode replacement candidate,61

say b. We count the number of a’s and b’s over a given subword, until a certain number of62

events, say 10, has been processed. The most frequent letter out of a and b in this 10-letter63

subword, say a, wins the round and becomes the new mode prediction. The other letter64

loses the round and is replaced by a letter sampled at random, say c. In the next round65

the subword length will be increased, say to 11, and a will compete against c over the next66

subword. We reuse two counters for the two letters, and the other two counters to keep67

track of the current subword length and to stop counting when that length is reached. By68

repeating the process we get increasingly higher confidence that a is indeed the mode. Even69

if by random perturbation the mode a of the generating Markov chain was no longer the70

current prediction, it would eventually get sampled again and statistically reappear, and71

eventually remain, as the prediction.72

The algorithm of our mode monitor easily transfers to an efficient monitor for the median.73

Indeed, we also show that our results generalize to any property expressible as Boolean74

combination of linear inequalities over frequencies of events. An application of our algorithmic75

ideas is to learn the transition probabilities of a connected Markov chain of known structure76

through the observation of subword frequencies.77

The main result of this paper is that, assuming the monitored system is a connected78

Markov chain, our monitoring algorithm converges almost surely. The proof of this fact calls79

for a new ergodic theory based on subwords as opposed to prefixes. This theory uses as its80

main building block a variant of the law of large numbers over so-called triangular random81

arrays of the form X1,1, X2,1, X2,2, X3,1, . . . and hinges on deep results from matrix theory.82

The correctness of the algorithm can also be understood, in a weaker form, by showing83

convergence in probability of its output. Assuming that the Markov chain starts in a stationary84

distribution, the probability of a given word u occurring as subword of an ω-word w at85

position i is independent of i. As a result, when the value of a function over prefixes converges86

probabilistically, then the same limit is reached probabilistically over arbitrary subwords.87

In short, the main conceptual and technical contributions of this paper are the following:88

1. We propose the novel setting of limit monitoring (Section 3).89

1 Consider the IPv4 protocol alphabet with its 4,294,967,296 letters (addresses) and the UTF-8 encoding
alphabet with its 1,112,064 letters (code points).
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2. We provide a generic scheme for efficient limit monitoring (Section 5) and instantiate it90

to specialized monitoring algorithms for the mode (Section 5.2) and median (Section 5.3),91

as well as a general class of frequency properties (Section 6).92

3. We develop a new ergodicity theory for connected Markov chains (Section 5.1) to prove93

our monitoring algorithms correct.94

1.1 Related Work95

In the area of formal verification, probabilistic model checking [14, 15] and quantitative96

verification [11] are concerned with the white-box static analysis of a probabilistic system.97

Statistical model checking [1] tries to learn the probabilistic structure of a system by sampling98

many executions, and thus also applies to black-box systems. These are in contrast to our99

monitoring setting where a single execution of a black-box system is dynamically observed100

during execution. Our work belongs specifically to the field of runtime verification [4], which is101

concerned with the evaluation of temporal properties over program traces. While much of the102

research in this domain assumes finite-state monitors, in this work we study an infinite-state103

problem based on the model of counter monitors. The expressiveness of different register104

machines and resource trade-offs for monitoring safety properties involving counters and105

arithmetic registers is studied in [9]. Another infinite-state model for monitoring is that of106

quantified event automata [3], which combine finite automata specifications with first-order107

quantification. Other quantitative automata machines are surveyed in [7].108

The computation of aggregates over an ongoing system execution in real-time was109

considered in various areas of computer science. Stream expressions [8] and quantitative110

regular expressions [2] provide frameworks for the specification of transducers over data111

streams. The work on runtime verification and stream processing can be seen as solving112

real-time monitoring problems, and very rarely assumes a probabilistic model. A notable113

exception can be found in [21], who propose to use hypothesis testing to provide an interval of114

confidence on the monitor outcome when evaluating some probabilistic property. In the vast115

literature from runtime verification to online algorithms, the problem of limit monitoring as116

defined, solved, and applied in this paper was, to the best of our knowledge, not studied before.117

It is well-known that certain common statistical indicators can be computed in real time.118

For example, the average can be computed by simply maintaining the sum and sample size.119

Perhaps more surprisingly, the variance and covariance of a sequence can also be computed120

in one pass through classical online algorithms [23]. However, other indicators, like the121

median, are hard or impossible to compute in real time. Offline algorithms for the median122

include selection algorithms (e.g., quickselect [12]) with O(n) run-time (versus O(n logn) for123

sorting), median of medians [5] (which is approximate), and the randomized algorithm of124

Mitzenmacher & Upfal [17]. The best known online algorithm uses two heaps to store the125

lower and higher half of values (i.e., all samples have to be stored), with an amortized cost126

of O(logn) per input. To the best of our knowledge, no real-time algorithm to compute the127

median exactly was proposed in the literature.128

Statistical properties of subword frequencies in Markov chains are studied in [6]. In129

Markov chain theory, the existence, uniqueness, and convergence results for stationary130

distributions are among the most fundamental results [18]. The rate of convergence towards131

a stationary distribution is called mixing time [16]. In general, the mixing time is controlled132

by the spectral gap of the transition matrix, with precise results only know for particular133

random processes, like card shuffling. These result do not lead to bounds on the convergence134

rate of frequencies of events in labeled Markov chains.135

An indirect (and somewhat degenerate) approach to monitoring would be to first learn136
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the monitored system, and then perform offline verification on the learned model. Learning137

probabilistic generators was studied in the setting of automata learning [19], but requires138

more powerful oracle queries like membership and equivalence. Rudich showed that the139

structure and transition probabilities of a Markov chain can, in principle, be learned from a140

single input sequence [20]. However, the algorithm is impractical as it essentially enumerates141

all possible structures.142

2 Definitions143

Let Σ be a finite alphabet of events. Given a finite or infinite word or ω-word w ∈ Σ∗ ∪ Σω144

and a position i, 1 ≤ i ≤ |w|, we denote by wi its i’th value. Given a pair of positions i145

and j, i ≤ j, we denote by wi..j the infix of w from i to j, such that |wi..j | = j − i+ 1 and146

(wi..j)k = wi+k−1 for all 1 ≤ k ≤ j − i + 1. We denote by w..i = w1..i the prefix of w of147

length i. For any word w ∈ Σ∗ and letter a ∈ Σ we write |w|a for the number of occurrences148

of a in w.149

2.1 Sequential Statistics150

We define a statistic to be any function that outputs an indicator for a given input word.151

I Definition 1 (Statistic). Let Σ be a finite alphabet and Λ be an output domain. A statistic152

is a function µ : Σ∗ → Λ.153

In this paper we focus on statistics that are based on the frequency, or number of154

occurrence, of events. Two typical examples are the mode, i.e. the most frequent event, and155

the median, i.e., the value separating as evenly as possible the upper half from the lower half156

of a data sample.157

I Example 2 (Mode). We say that a ∈ Σ is the mode of w when |w|a > |w|σ for all158

σ ∈ Σ \ {a}. We denote by mode : Σ∗ → Σ ] {⊥} the statistic that maps a word to its mode159

if it exists, or to ⊥ otherwise.160

I Example 3 (Median). Let Σ be ordered by ≺. We say that a ∈ Σ is the median of w when161 ∑
σ�a |w|σ <

∑
σ4a |w|σ and

∑
σ≺a |w|σ <

∑
σ<a |w|σ. We denote by median : Σ∗ → Σ]{⊥}162

the statistic that maps a word to its median if it exists, or to ⊥ otherwise.163

An example of a statistic that takes into account the order of events in a word is the164

most frequent event that occurs right after some dedicated event.165

2.2 Counter Monitors166

The task of a monitor is to compute a statistic in real time. We define a variant of monitor167

machines that allows us to classify a monitor based on the amount of resources it uses. We168

adapt the definition of counter monitors set in [9] to our setting of monitoring frequencies.169

Let X be a set of integer variables, called registers or counters. Registers can be read170

and written according to relations and functions in the signature S = 〈0,+1,≤〉 as follows:171

An update is a mapping from variables to terms over S;172

A test is a conjunction of atomic formulas over S and their negation.173

The set of updates and test over X are denoted Γ(X) and Φ(X), respectively.174
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I Definition 4 (Counter Monitor). A counter monitor is a tuple A = (Σ,Λ, X,Q, λ, s,∆),175

where Σ is an input alphabet, Λ is an output alphabet, X is a set of registers, Q is a set of176

control locations, λ : Q× NX → Λ is an output function, s ∈ Q is the initial location, and177

∆ ⊆ Q× Σ× Φ(X)× Γ(X)×Q is a transition relation such that for every location q ∈ Q,178

event σ, and valuation v there exists a unique edge (q, σ, φ, γ, q′) ∈ ∆ such that v |= φ is179

satisfied. The sets Σ, X,Q,∆ are assumed to be finite.180

A run of the monitor A over a word w ∈ Σ∗ ∪Σω is a sequence of transitions (q1, v1) w1−−→181

(q2, v2) w2−−→ . . . labeled by w such that q1 = s and v1(x) = 0 for all x ∈ X. Here we182

write (q, v) σ−→ (q′, v′) when there exists an edge (q, σ, φ, γ, q′) ∈ ∆ such that v |= φ and183

v′(x) = v(γ(x)) for all x ∈ X. There exists exactly one run of a given counter monitor A184

over a given word w.185

I Definition 5 (Monitor Semantics). Every counter monitor A computes a statistic JAK :186

Σ∗ → Λ, such that JAK(w) = λ(q, v) for (q, v) the final state in the run of A over w ∈ Σ∗.187

We remark that the term “counter machine” has various different meanings in the188

literature and designates machines with varying computational power. In our definition we189

note the use of constant 0 that enables resets. Such resets cannot be simulated in real time.190

On the contrary, arbitrary increments are w.l.o.g., as shown in [10].191

2.3 Probabilistic Generators192

In this work we model systems as labeled Markov chains, whose executions generate random193

ω-words.194

I Definition 6 (Markov Chain). A (finite, connected, labeled) Markov chain is a tuple195

M = (Σ, Q, λ, π, p), where Σ is a finite set of events, Q is a set of states, λ : Q → Σ is196

a labeling, π is an initial-state distribution over Q, and p : Q × Q → [0, 1] is a transition197

distribution with
∑
q′∈Q p(q, q′) = 1 for all q ∈ Q and whose set of edges (q, q′) such that198

p(q, q′) > 0 forms a strongly connected graph.199

In the rest of this paper, even when not explicitly stated, every Markov chain is assumed200

to be finite and connected.201

LetM = (Σ, Q, λ, π, p) be a Markov chain. A random infinite sequence (Xi)i≥1 of states202

is an execution ofM, Markov(M) for short, if (i) X1 has distribution π and (ii) conditional203

on Xi = q, Xi+1 has distribution q′ 7→ p(q, q′) and is independent of X1, . . . , Xi−1. By204

extension, a random ω-word w is Markov(M) if wi = λ(Xi) for all i ≥ 1.205

We denote by Vq(k) =
∑k
i=1 1{Xi=q} the number of visits to state q within k steps, and206

by Tq = inf{i > 1 | Xi = q} the first time of visiting state q (after the initial state). Then207

mq = E(Tq | X1 = q) is the expected return time to state q. The ergodic theorem for Markov208

chains states that the long-run proportion of time spent in each state q is the inverse of mq.209

Thus we call fq = 1
mq

the (long-run) frequency of q.210

I Theorem 7 (Ergodic Theorem [18]). LetM be a finite connected Markov chain. If (Xi)i≥1211

is Markov(M) then Vq(n)/n a.s.−−→ fq as n→∞ for every state q.212

Now summing the frequencies of all states mapped to a letter σ gives the expected213

frequency of σ, fσ =
∑

q∈Q
λ(q)=σ

fq, as characterized by the following corollary.214

I Corollary 8. Let M be a finite connected Markov chain. If w is Markov(M) then215

|w..n|σ/n
a.s.−−→ fσ as n→∞ for every letter σ.216
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3 The Limit-Monitoring Problem217

We want to monitor the value of a given statistic µ : Σ∗ → Λ over the execution of some218

(probabilistic) process P. This execution is potentially infinite, forming a word w ∈ Σω. In219

practice, the statistic µ is often used as an estimator of some parameter v ∈ Λ of process P.220

Such a parameter is always well-defined in the case where µ converges to v as follows.221

I Definition 9 (Convergence). A statistic µ : Σ∗ → Λ (almost surely) converges to a value222

v ∈ Λ over a random process P, written µ(P) = v, if Pw∼P(limn→∞ µ(w..n) = v) = 1.223

Computing the value of the statistic µ over every finite prefix of w can be an objective224

in itself. It gives us the most precise estimate of the parameter v when defined. A monitor225

fulfilling this requirement is called real-time. Such a monitor is past-oriented, and is concerned226

with computing accurately the value µ(w..n) of the statistic at step n, for all n.227

I Definition 10 (Real-Time Monitoring). A monitor A is a real-time monitor of statistic µ,228

if JAK = µ.229

However, if the aim of the monitor is to serve as an estimator of the parameter v, then230

it may not be strictly required to output the exact value of µ at every step, as long is its231

output almost surely converges to v. A monitor that almost surely converges to v is qualified232

as limit. Such a monitor is future-oriented, and is concerned with the asymptotic value of233

the statistic µ as time tends to infinity, not necessarily computing its precise value over each234

prefix of the computation.235

I Definition 11 (Limit Monitoring). A monitor A is a limit monitor of statistic µ : Σ∗ → Λ236

on process P, when JAK(P) = v if and only if µ(P) = v for all v ∈ Λ.237

In words, if the statistic converges then the limit monitor converges to the same value,238

and if the statistic does not converge then neither does the monitor. To the best of our239

knowledge, the notion of limit monitoring was not previously considered. By definition, every240

real-time monitor is trivially also a limit monitor for the corresponding statistic. However,241

in this paper we show that dedicated limit monitors can be much more efficient.242

I Proposition 12. Every real-time monitor of some statistic µ is also a limit monitor of µ,243

on arbitrary generating processes.244

This is in clear contrast with much related work on runtime verification, where past-245

oriented monitoring (inherently deterministic) often turns out to be computationally easier246

than future-oriented monitoring (requiring nondeterministic simulation).247

4 Precise Real-Time Monitoring248

In this section we study the real-time monitoring of statistics by counter monitors. Real-249

time monitors can be seen as monitoring the past in a precise manner. We show that for250

some common statistics such as the mode and median statistics this problem is inherently251

resource-intensive. More precisely, we identify a class of statistical quantities requiring at252

least as many counters as there are events in the input alphabet.253

To illustrate the difficulty of monitoring certain statistics in real time, recall the mode254

as defined in Example 2. A straightforward real-time monitor for the mode counts the255

number of occurrences of each letter σ in a separate counter xσ. Then σ is the mode if256

and only if xσ > xρ for all ρ ∈ Σ \ {σ}. Hence |Σ| counters suffice to monitor the mode.257
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But can we do better? Intuitively it seems necessary to keep track of the exact number of258

occurrences for each individual letter. Indeed, we show in this section that for real-time259

monitors this number is tight: any real-time counter monitor of the mode must use at least260

|Σ| counters. In many application where the alphabet Σ is large this may be beyond the261

amount of resources available for a monitor. While Proposition 12 implies that the mode can262

also be limit monitored using |Σ| counters, we show in the next section that limit monitoring263

can be much more resource-sparing.264

To capture the hardness of real-time monitoring for a whole class of statistics, we start by265

defining an equivalence relation over words relative to a statistic. Two words are µ-equivalent if266

it is impossible for µ to distinguish them, even with an arbitrary suffix appended to both words.267

I Definition 13 (µ-Equivalence). Let µ be a statistic over Σ. Two words w1, w2 ∈ Σ∗ are268

µ-equivalent, denoted w1 ≡µ w2, if µ(w1u) = µ(w2u) for all words u ∈ Σ∗.269

Now we define the notion of a Σ-counting statistic, which states that two equivalent270

words must have exactly the same number of occurrences per letter, modulo a constant shift271

across all letters. Intuitively a Σ-counting statistic induces many equivalence classes, too272

many to be possibly tracked by a counter monitor with less than |Σ| counters.273

I Definition 14 (Σ-Counting). A statistic µ is Σ-counting if w ≡µ w′ implies that there274

exists n ∈ Z such that |w|σ = |w′|σ + n for all σ ∈ Σ.275

I Proposition 15. For any Σ such that |Σ| > 1 both the mode and the median statistics are276

Σ-counting.277

To illustrate the definition of Σ-counting, consider the mode-equivalent words aabc and a278

over the alphabet Σ = {a, b, c}. The distance for all letter counts is one. Over the alphabet279

with an additional letter d the two words are not mode-equivalent (for example, consider the280

extensions aabcd and ad), since the distance for the count of d is zero.281

Our proof that Σ-counting statistics are expensive to monitor follows the argument in [9]282

that separates (k + 1)-counter monitors from k-counter monitors. In particular, we show283

that for large n, the number of µ-inequivalent words of length less or equal to n is greater284

than the number of possible configurations reachable by an O(k)-counter monitor over words285

of length less or equal to n.286

I Theorem 16. Real-time counter monitors of a Σ-counting statistic require Ω(|Σ|) counters.287

As a corollary of Proposition 15 and Theorem 16, we have that precisely monitoring288

the mode and the median in real time requires roughly as many counters as the size of the289

alphabet, which is prohibitive in many practical applications.290

5 Efficient Limit Monitoring291

In this section we develop a new algorithmic framework for efficient limit monitoring of292

frequency-based statistics. We first present a general monitoring scheme and then instantiate it293

to derive efficient monitoring algorithms for both mode (Section 5.2) and median (Section 5.3).294

In Section 6 we present a monitoring algorithm for a general class of frequency properties.295

While corresponding real-time monitors require a number of counters proportional to the296

size of the input alphabet, our limit monitors only use a constant number of counters297

(e.g., four for the mode), independent of the alphabet size. The algorithmic ideas in our298

monitoring scheme are simple and intuitive, which makes our algorithms easy to understand,299
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implement, and deploy. However, the correctness proofs are surprisingly hard and required300

us to develop a new ergodicity theory for Markov chains that takes limits over arbitrary301

subwords (Section 5.1).302

Our high-level monitoring strategy comprises the following points:303

1. Split the input sequence into subwords of increasing length.304

2. In every subword, acquire partial information about the statistic.305

3. Assemble global information about the statistic across different subwords.306

The idea behind splitting the input sequence into subwords is that when the monitored307

property involves frequencies of many events, then different events can be counted separately308

over different subwords, which enables us to reuse registers. Because of the probabilistic309

nature of the generator we can still ensure that, in the long run, the monitor value converges310

to the limit of the statistic. As we will see, there is great flexibility in how exactly the311

sequence is partitioned. In principle, the subwords can overlap or leave gaps arbitrarily, as312

long as the length of the considered subwords grows “fast enough”.313

5.1 The Ergodic Theorem over Infixes314

Consider the following Markov chain on the left-hand side, and a random ω-word generated315

by this Markov chain in the table on the right-hand side.316

x y

z

1

1
3

2
3

1 ω-word x y z x y z x y x y z x y z x y . . .

Prefixes 0 .5 .33 .25 .4 .33 .29 .38 .33 .4 .36 .33 .38 .36 .33 .38 a.s.−−→ 3
8

Infixes 0 .5 .33 .5 .2 a.s.−−→ 3
8

317

The second row of the table shows the frequency of state y in prefixes of increasing length.318

For example, after xyzx we have frequency 1
4 . The classic ergodic theorem (Theorem 7) tells319

us that this frequency almost surely converges to fy = 3
8 , the inverse of the expected return320

time to y. However, this theorem does not apply to take a limit over arbitrary subwords,321

for example, the infixes of increasing length (indicated by vertical lines) in the third row of322

the table. We prove a result that shows that also in this much more general case the limit323

frequency of y is 3
8 .324

The strong law of large numbers states that the empirical average of i.i.d. random variables325

converges to their expected value, i.e., (X1 + · · ·+Xn)/n a.s.−−→ E(X1) as n→∞. The fact326

that random variables are “reused” from the n’th to the (n+ 1)’st sample does matter in327

this statement. Otherwise the mere existence of a mean value is not sufficient to guarantee328

convergence. However, when the variance (or higher-order moment) is bounded, then this329

“reuse” is no longer required. We now prove such a variant of the law of large numbers.2330

I Theorem 17. Let {Xn,i : n, i ≥ 1} be a family of identically distributed random variables331

with E(X1,1) = µ and E(X4
1,1) <∞, such that {Xn,i : i ≥ 1} are mutually independent for332

every n ≥ 1. Let (sn)n≥1 be a sequence of indices with sn ≥ an for every n ≥ 1 and fixed333

a > 0. Set Sn =
∑sn

i=1Xn,i. Then Sn/sn
a.s.−−→ µ as n→∞.334

In our proof the combination of the fourth-moment bound and the linear increase of sn335

leads to a converging geometric series. We believe that these assumptions could be slightly336

2 Such a setting is sometimes called array of rowwise independent random variables in the literature,
see [13] in particular.
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relaxed to a second-moment bound or to sublinearly increasing sequences. Theorem 17337

already gives a basis to reason about infix-convergence for i.i.d. processes. We now use it to338

derive a corresponding result for Markov chains.339

Let M be a Markov chain and (Xi)i≥1 be Markov(M). Given an offset function s :340

N → N, we refer to Xs(n)+1Xs(n)+2 · · · as the n’th suffix of X. We denote by V nq (k) =341 ∑k
i=1 1{Xs(n)+i=q} the number of visits to state q within k steps in the n’th suffix. We342

generalize the classic ergodic theorem for Markov chains (Theorem 7) to take the limit over343

arbitrary subwords.344

I Theorem 18. Let M be a finite connected Markov chain and s an offset function. If345

(Xi)i≥1 is Markov(M) then V nq (n)/n a.s.−−→ fq as n→∞ for every state q.346

Our proof applies Theorem 17 to the i.i.d. excursion times between visiting state q within347

the n’th suffix. This requires bounding the moments of excursion times and showing that the348

time until visiting q for the first time in every subword becomes almost surely negligible for349

increasing size subwords. As a corollary of Theorem 18 we get the following characterization350

for the long-run frequencies of letters over infixes.351

I Corollary 19. LetM be a finite connected Markov chain and s an offset function. If w is352

Markov(M) then |ws(n)+1..s(n)+n|σ/n
a.s.−−→ fσ as n→∞ for every letter σ.353

5.2 Monitoring the Mode354

As we saw in Section 4, precisely monitoring the mode in real-time requires at least |Σ|355

counters. By contrast, we show now that the mode can be limit monitored using only four356

counter registers. For convenience we also use two registers to store event letters; since we357

assume Σ to be finite they can be emulated in the finite state component of the monitor.358

The core idea of our monitoring algorithm is to split w into chunks, and for each chunk359

only count the number of occurrences of two letters x and y. Letter x is considered the360

current candidate for the mode and y is a randomly selected contender. If x does not occur361

more frequently than y in the current chunk, y becomes the mode candidate for the next362

chunk. The success of the monitor relies on two points: (i) it must be repeatably possible for363

the true mode to end up in x, and (ii) it must be likely for the true mode to eventually remain364

in x. The first point is achieved by taking y randomly, and the second point is achieved by365

gradually increasing the chunk size. It is sufficient to increase the chunk size by one and366

decompose w as follows:367

σ1 σ2σ3 σ4σ5σ6 σ7σ8σ9σ10 σ11 · · ·368
369

Formally, the decomposition of w into chunks is given by an offset function s : N → N370

with s(n) = n(n−1)
2 , such that the n’th chunk starts at s(n) + 1 and ends at s(n) + n. For371

convenience, we introduce a double indexing of w by n ≥ 1 and 1 ≤ i ≤ n, such that372

wn,i = ws(n)+i is the i’th letter in the n’th chunk.373
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Algorithm 1: Mode monitor
1 Function Init(σ):
2 x, y := σ, σ

3 cx, cy := 0, 0
4 n, i := 2, 1
5 return x

6 Function Next(σ):
7 if i = 1 then
8 if cx ≤ cy then x := y

9 y := σ

10 cx, cy := 0, 0
11

12 if x = σ then cx := cx + 1
13 if y = σ then cy := cy + 1
14

15 if i = n then n, i := n+ 1, 1
16 else i := i+ 1
17 return x

Algorithm 2: Median monitor
1 Function Init(σ):
2 x := σ

3 c1, c2, c3, c4 := 0, 0, 0, 0
4 n, i := 2, 1
5 return x

6 Function Next(σ):
7 if i = 1 then
8 if c1 ≥ c2 then x := pre≺(x)
9 if c3 ≥ c4 then x := succ≺(x)

10 c1, c2, c3, c4 := 0, 0, 0, 0
11 if σ < x then c1 := c1 + 1
12 if σ ≥ x then c2 := c2 + 1
13 if σ > x then c3 := c3 + 1
14 if σ ≤ x then c4 := c4 + 1
15 if i = n then n, i := n+ 1, 1
16 else i := i+ 1
17 return x

374

A formal description of our mode monitor is given in Algorithm 1. The counters n and375

i keep track of the decomposition of w. For the very first letter σ, Init initializes both376

registers x and y to σ (line 2). Then, for every subsequent letter, Next counts an occurrence377

of x and y using counters cx and cy, respectively (line 12-13). At the beginning of every378

chunk, x is replaced by y if it did not occur more frequently in the previous chunk (line 8),379

and y is set to the first letter of the chunk (line 9). At every step, x is the current estimate380

of the mode.381

I Example 20. For alphabet Σ = {a, b, c} and probability distribution p with p(a) = 0.5,382

p(b) = 0.3, and p(c) = 0.2, the following table shows a word w where every letter was383

independently sampled from p, and the corresponding mode at every position in w.384

w c b b a b a c a a b c a c a a a · · ·
mode c - b b b b b - a - - a a a a a · · ·

385

In this example, mode first switches between the different letters and undefined, but then386

eventually seems to settle on a. We show that this is not an accident, but happens precisely387

because a is the unique letter that p assigns the highest probability.388

Now the following table shows the execution of Algorithm 1 on the same random word.389

n 1 2 3 4 5 6 · · ·
i 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 · · ·
σ c b b a b a c a a b c a c a a a · · ·
x c c b a a a · · ·
y c b a c c a · · ·
cx 1 0 0 0 1 1 0 1 2 2 0 1 1 2 3 1 · · ·
cy 1 1 2 1 1 2 1 1 1 1 1 1 2 2 2 1 · · ·

390

Initially c is considered the mode and compared to b in the second chunk, where b occurs391

more frequently. Thus b is considered the mode and compared to a in the third chunk, where392

a occurs more frequently. In the fourth and fifth chunk a is compared to c, where a occurs393

more frequently in both chunks. Again, the algorithm seems to settle on a, the true mode.394
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To prove the correctness of our algorithm according to Definition 11 requires us to first395

characterize when a Markov chain has a mode, i.e., under which conditions the mode statistic396

almost surely converges. For this it is illustrative to instantiate Definition 9 for the mode,397

which states that a is the mode of an ω-word w if there exists a length n, such that for every398

length n′ ≥ n, |w..n′ |a > |w..n′ |b for every b 6= a. In a Markov chain the ergodic theorem399

characterizes the long-run frequencies of states, and thus the long-run frequencies of letters400

(see Corollary 8). Hence a Markov chain has a mode if and only if its random ω-word almost401

surely has a unique letter that occurs most frequently.402

I Theorem 21. Over Markov chains, the mode statistic converges to a if and only if fa > fb403

for all b 6= a.404

Proof. Let M be a Markov chain and w be Markov(M). According to Corollary 8,405

|w..n|σ/n
a.s.−−→ fσ as n→∞ for every σ ∈ Σ406

Now assuming fa > fb for all b 6= a, we have for sufficiently large n that |w..n|a > |w..n|b407

for all b 6= a, and thus a is the mode of w almost surely.408

Conversely, if there are two distinct letters a, a′ with equal maximal frequencies fa, fa′ ,409

then almost surely the mode switches infinitely often between a and a′, thus neither a nor a′410

is the mode of w, and thus w does not have a mode. J411

Now we can prove that Algorithm 1 is a limit monitor for the mode. The core of the412

argument is that the probability of the true mode eventually staying in register x is lower-413

bounded by the probability of a eventually being the most frequent letter in every subword414

and a being eventually selected into y, which happens almost surely.415

I Theorem 22. Algorithm 1 limit-monitors the mode over Markov chains.416

Proof. Let w be Markov(M) and let a be the mode of w (the other case where w does not417

have a mode is obvious). Let γn be the function that maps every letter to the number of418

its occurrences in the n’th subword, i.e., γn(σ) = |ws(n)+1..s(n)+n|σ. To capture Algorithm 1419

mathematically, we define the random variables420

Yn = wn,1; X1 = w1,1; Xn+1 =
{
Xn, if γn(Xn) > γn(Yn);
Yn, if γn(Xn) ≤ γn(Yn).421

422

That is, Xn and Yn are the values of x and y throughout the n’th subword. We need to show423

that almost surely, eventually Xn = a forever, i.e., P(♦�Xn = a) = 1.3424

It is more likely that a eventually stays in x forever as that a eventually is the most425

frequent letter in every subword and that a is also eventually sampled into y:426

P(♦�Xn = a)427

≥ P(♦(�∀b 6= a : γn(b) < γn(a)) ∧ (♦Yn = a))428

≥ P((�≥n0∀b 6= a : γn(b) < γn(a)) ∧ (♦≥n0Yn = a))429
430

The last lower bound holds for any fixed n0 and we show that it converges to 1 as n0 →∞.431

P((�≥n0∀b 6= a : γn(b) < γn(a)) ∧ (♦≥n0Yn = a))432

≥ P(�≥n0∀b 6= a : γn(b) < γn(a)) · P(♦≥n0Yn = a)433

= P(�≥n0∀b 6= a : γn(b) < γn(a))434
435

3 In the interest of readability we use temporal (modal) logic notation ♦ and � meaning eventually and
forever, respectively.
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Since γn(σ)/n a.s.−−→ fσ by Corollary 19 and a is the unique letter with highest frequency fa436

by Theorem 21, we have P(�≥n0∀b 6= a : γn(b) < γn(a)) = 1 for sufficiently large n0. Thus,437

P(♦�Xn = a) = 1. J438

Note that our policy of always selecting the mode contender y from the input is an439

optimization, since we expect to see the mode often in the input. Our proof requires that440

the true mode is selected into y infinitely often, which is the case because we update y at441

irregular positions. Two other policies to update y would be (i) to always uniformly sample442

from Σ, or (ii) to cycle deterministically through all elements of Σ.443

5.3 Monitoring the Median444

Recall from Example 3 that a is the median of a word w over a ≺-ordered alphabet Σ when445 ∑
σ�a
|w|σ <

∑
σ4a

|w|σ (1)446

on the one hand, and447 ∑
σ≺a
|w|σ <

∑
σ<a

|w|σ (2)448

on the other hand. These equations readily lead to our median limit-monitoring algorithm449

shown in Algorithm 2, which we display next to out mode monitor to highlight their common450

structure. The idea of the algorithm is to maintain a median candidate x and then use451

four counters c1, c2, c3, c4 to compute the sums in inequality (1) and (2), for a = x, in every452

subword (line 11-14). Whenever any of the two inequalities is not satisfied at the end of a453

subword, a new median candidate is selected into x for the next subword. In particular, if454

inequality (1) is violated then the next lower value in the ordering ≺ is selected (line 8), and455

if inequality (2) is violated then the next higher value is selected (line 9). Notice that we456

could eliminate the counters c3, c4, by alternating the computation of inequality (1) and (2)457

over different subwords, and thus reusing c1, c2 to compute inequality (2).458

I Theorem 23. Algorithm 2 limit-monitors the median over Markov chains.459

6 Monitoring General Frequency Properties460

In the previous section we presented high-level principles for efficient limit monitoring and461

designed specialized monitoring algorithms for the mode and median statistic, which are both462

derived from event frequencies. We postulate that our algorithmic ideas are straightforward463

to adapt to obtain monitors for many other frequency-based statistics. However, we did not464

yet precisely defined what we mean by frequency property, nor demonstrated how efficiently465

these can be limit-monitored in the general setting. In this section we provide a first step in466

this direction by defining a simple language to specify frequency-based Boolean statistics,467

and showing that all statistics definable in this language can be limit-monitored over Markov468

chains with four counters only.469

From the defining equations of the mode and median we observe that a characteristic470

construction is the formation of linear inequalities over the frequencies (or equivalently,471

occurrence counts) of specific events. The key part of the argument for the correctness472

of our monitoring algorithms is that since event frequencies almost surely converge, both473

over prefixes and infixes, also these inequalities almost surely “stabilize”. We use the same474

construction at the core of a language to define general frequency-based statistics. For475

simplicity we focus on statistics that output a Boolean value.476
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I Definition 24. A frequency formula over alphabet Σ is a Boolean combination of atomic477

formulas of the form478 ∑
σ∈Σ

ασ · fσ > α (3)479

480

where all α’s are integer coefficients.481

A frequency formula φ is built from linear inequalities over frequencies of events. The482

evaluation of a frequency formulas is as expected (we write w |= φ if φ evaluates to true over483

w). Hence we see φ as defining the Boolean statistic JφK : Σ∗ → B, where484

JφK(w) =
{

1, if w |= φ;
0, if w 6|= φ.

485

486

I Example 25. The existence of a mode is expressed as the frequency formula487 ∨
a∈Σ

∧
σ∈Σ
σ 6=a

fa > fσ .488

489

I Example 26. Consider the detection of the malfunction of a web server, which which490

would favour certain client requests over others. Such a malfunction could be observed by491

detecting that certain events are disproportionately more frequent than others. The following492

frequency formula specifies that no event can occur 100-times more frequent than any other493

event:494 ∧
a,b∈Σ
a6=b

fa < 100 · fb .495

496

A frequency formula φ can be limit monitored by simply evaluating φ repeatedly over497

longer and longer subwords. However, the key to save resources is to evaluate different atomic498

subformulas of φ over different subwords, and thus only evaluating one subformula at a time.499

I Theorem 27. Over Markov chains, every frequency formula can be limit-monitored using500

4 counters.501

Proof. Let φ be a frequency formula with k atomic subformulas φ1, . . . , φk of the form (3).502

The monitor partitions the input word w into infixes wn,i with |wn,i| = n, for n ≥ 1 and503

1 ≤ i ≤ k, as follows:504

. . . wn,1

φ1

wn,2

φ2

. . . wn,k

φk

φ

. . .505

506

Keeping track of the increasing infix length n and the current position within an infix requires507

two counters. Then over every infix wn,i the monitor uses two counters to compute φi, one508

for positive and one for negative increments. At the end of wn,i we have a truth value for509

φi that is used to partially evaluate φ. This evaluation is implemented in the final-state510

component of the monitor, and the two counters are reused across all infixes. Then after511

every k’th infix we have a new “estimate” of φ that in the long run converges the same way512

as JφK. Hence the resulting automaton is a limit monitor of φ: by Corollary 19, the frequency513

of each event over infixes of increasing length tends to its respective asymptotic frequency,514

so that strict inequalities holding over empirical frequencies almost surely hold over infixes515

of increasing length. J516
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7 Conclusion517

In this paper we have studied the monitoring of frequency properties of event sequences.518

We observed that real-time monitoring can be surprisingly hard (i.e., resource-intensive)519

for such properties, and introduced the alternative notion of limit monitoring. In this520

limit monitoring setting we showed that a simple algorithmic idea leads to resource-efficient521

monitoring algorithms for frequency properties. To prove the correctness of our algorithms522

we generalized the ergodic theory of Markov chains.523

The results in this paper are a first indicator of the relevance and potential of limit524

monitoring. We hope that future research broadens the understanding of this problem and525

we close with a number of interesting directions.526

First, we are interested in a tighter characterization of properties that can be efficiently527

limit monitored. Let us remark that the results in this paper immediately generalize from528

counting individual events to counting the occurrences of regular event patterns. This is the529

case because regular expression matching can be performed in real time by the finite state530

component of a counter monitor. We extended our frequency formulas with free variables531

to support non-Boolean statistics, and quantification to reason about unknown alphabet532

symbols. However, the shape and efficiency of a generic monitoring algorithm is not yet533

clear. For examples, we saw that there are different policies to partition the input sequence534

and different policies to obtain candidate values for the monitor output. Certain forms of535

existential quantification can be translated to random sampling, but this does not seem536

to hold in general since not all events in the alphabet may occur in the execution under537

consideration. Going even further, it would be interesting to consider limit monitoring of538

properties with temporal aspects (such as always and eventually modalities).539

Second, it is well known (see e.g. [6]) that the asymptotic frequencies of k-long subwords540

fully characterize a k-state connected Markov chain. Hence the transition probabilities of541

a Markov chain (of known structure) can be inferred from the conditional probabilities of542

events. Thus, assuming the structure of a Markov chain is known, frequency queries and543

the algorithmic ideas in this paper can be used to learn its transition probabilities to an544

arbitrary precision. It would be interesting to study more broadly “how much” of a system545

can be learned from frequency properties (and similar observations).546

Third, throughout this paper we used the term efficient to mean resource-efficient in547

the amount of memory used by a monitor. However, there is the orthogonal question of548

time-efficiency. For a limit monitor this means how quickly a monitor converges in relation549

to the monitored statistic. We hope that future research can provide numerical guarantees550

or estimates for convergence rates. For the simple setting of an i.i.d. word over a two-letter551

alphabet, we proved that the mode statistic converges exponentially fast. More precisely,552

if w is a random ω-word where every letter is i.i.d. (that is, independent and identically553

distributed) according to a probability distribution p over {a, b} with p(a) > p(b), then554

P(mode(w..n) = a) ≥ 1 − (4p(a)p(b))bn
2 c. Since this depends on the exact probabilities,555

the analytical expressions of the confidence value seem to become intractable for three556

letters or more. In probability theory, there exist several different notions of convergence557

of random variables. The results in this paper use the notion of almost-sure convergence558

of a statistic µ (Definition 9), that is, Pw∼P(limn→∞ µ(wn..) = v) = 1. It would be559

interesting to study also other notions, for example convergence in probability, that is,560

limn→∞ Pw∼P(µ(wn..) = v) = 1.561

Fourth, the correctness results we derived for our monitoring algorithms hold for systems562

modeled as connected Markov chains. However, we believe that the algorithmic ideas of this563
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paper are more widely applicable. Thus it would be interesting to study limit monitoring564

for other types of systems, for example, Markov decision processes which are challenging565

for our monitoring scheme because nondeterminism allows certain events to always occur566

deliberately when the monitor is not watching for them. In the security context a monitored567

system is usually assumed to be adversarial, not probabilistic. It could be interesting to568

turn our deterministic monitors of probabilistic systems into probabilistic monitors for569

nondeterministic systems.570
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A Proofs of Section 3620

I Proposition 12. Every real-time monitor of some statistic µ is also a limit monitor of µ,621

on arbitrary generating processes.622

Proof. We have JAK = µ, hence if µ converges to some value v over a generating process P623

then JAK also converges to v. J624

B Proofs of Section 4625

I Definition 28. Two configurations (q1, v1) and (q2, v2) of a counter monitor over the626

alphabet Σ are equivalent if for all finite words u ∈ Σ∗ we have (q1, v1) u−→ (q, v) if and only627

if (q2, v2) u−→ (q, v). As customary, (q, v) u−→ (q′, v′) denotes the existence of a sequence of628

transitions from (q, v) to (q′, v′) labeled by u.629

I Proposition 15. For any Σ such that |Σ| > 1 both the mode and the median statistics are630

Σ-counting.631

Proof. We prove the statement for the case of the mode. Let w and w′ be words such632

that w ≡mode w
′. Assume, towards a contradiction, that for all n ∈ Z there exists σ ∈ Σ633

such that |w|σ 6= |w′|σ + n. By assumption w and w′ have the same mode ρ, otherwise634

they are trivially not equivalent according to ≡mode. Let k = |w|ρ − |w′|ρ. There exists635

σ ∈ Σ such that |w|σ 6= |w′|σ + k. We have in particular σ 6= ρ. Let l = |w|ρ − |w|σ and636

l′ = |w′|ρ − |w′|σ. But then mode(wσl) 6= mode(w′σl) or mode(wσl′) 6= mode(w′σl′), which637

contradicts w ≡mode w
′. J638

I Theorem 16. Real-time counter monitors of a Σ-counting statistic require Ω(|Σ|) counters.639

Proof. Let Σ = {0, 1, . . . , k} be a finite alphabet of size k ≥ 3. Let µ be a Σ-counting640

statistic, and A be a k − 2 counter monitor with m states. We show that for large enough n,641

the number of µ-inequivalent words of length less or equal to n is strictly greater than the642

number of possible configurations reachable by a k-counter monitor over words of length less643

or equal to n.644

By Σ-counting hypothesis, if u1 ≡µ u2 then there is an integer p for which |u1|i = |u2|i+p645

holds for all 0 ≤ i ≤ k. We can thus represent each equivalence class of ≡µ by a string u646

such that |u|i = 0 for (at least) one i ∈ Σ. The number of equivalence classes of prefixes of647

length up to n is
(
n+k+1
k+1

)
−
(
n
k+1
)
.648

We assume without loss of generality that counter values are incremented in A by at649

most one at every event [10]. There are mnk−2 possible configurations of a counter monitors650

over words of length up to n. Yet we have that
(
n+k+1
k+1

)
−
(
n
k+1
)
> mnk−2 for sufficiently651

large n. Hence for some integer n, there are more µ-inequivalent words of length less or equal652

to n than configurations a (k − 2)-counter monitor can possibly reach after reading such653

words. It follows that no (k − 2)-counter monitor can compute µ. J654
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C Proofs of Section 5655

I Theorem 17. Let {Xn,i : n, i ≥ 1} be a family of identically distributed random variables656

with E(X1,1) = µ and E(X4
1,1) <∞, such that {Xn,i : i ≥ 1} are mutually independent for657

every n ≥ 1. Let (sn)n≥1 be a sequence of indices with sn ≥ an for every n ≥ 1 and fixed658

a > 0. Set Sn =
∑sn

i=1Xn,i. Then Sn/sn
a.s.−−→ µ as n→∞.659

Proof. Let E(X4
1,1) = M . W.l.o.g. µ = 0 (consider Yn,i = Xn,i − µ). We expand E(S4

n) and660

observe that, by independence, E(Xn,iX
3
n,j) = E(Xn,iXn,jX

2
n,k) = E(Xn,iXn,jXn,kXn,l) = 0661

for distinct indices i, j, k, l. Hence,662

E(S4
n) = E

 ∑
1≤i≤sn

X4
n,i + 6

∑
1≤i<j≤sn

X2
n,iX

2
n,j

 .663

664

Now for i ≤ j, by independence and the Cauchy-Schwarz inequality665

E(X2
n,iX

2
n,j) = E(X2

n,i)E(X2
n,j) ≤ E(X4

n,i)
1
2 E(X4

n,j)
1
2 = M .666

So we get the bound667

E(S4
n) ≤ snM + 3sn(sn − 1)M ≤ 3s2

nM .668

Thus669

E

∑
n≥1

(Sn/sn)4

 ≤ 3M
∑
n≥1

1/s2
n ≤ 3M

a2

∑
n≥1

1/n2 <∞670

which implies671 ∑
n≥1

(Sn/sn)4 <∞ a.s.672

and hence Sn/sn
a.s.−−→ 0. J673

I Theorem 18. Let M be a finite connected Markov chain and s an offset function. If674

(Xi)i≥1 is Markov(M) then V nq (n)/n a.s.−−→ fq as n→∞ for every state q.675

To prove the result, we first introduce some notation and supporting lemmas.676

We denote by Tnq (r) (for r ≥ 0) the r’th time of visiting state q in the n’th subword, and677

by Snq (r) (for r ≥ 1) the length of the r’th excursion to state q in the n’th subword:678

Tnq
(0) = inf{i ≥ 1 | Xs(n)+i = q};679

Tnq
(r+1) = inf{i > Tnq

(r) | Xs(n)+i = q};680

Snq
(r+1) = Tnq

(r+1) − Tnq
(r).681

682

Let SSnq (k) be the length of the first k excursions to state q, and TSnq (k) additionally includes683

the time to visit q for the first time:684

SSnq (k) =
k∑
i=1

Snq
(i); TSnq (k) = Tnq

(0) + SSnq (k) .685

686

For a state q we establish the following connection between the time it takes to visit q a687

certain number of times, and the number of times q is visited within a certain time bound.688
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I Lemma 29. For a ≥ 0 and arbitrary b, we have689

TSnq (k) ≤ n+ a =⇒ V nq (n) ≥ k − a ; (4)690

TSnq (k) ≥ n− b =⇒ V nq (n) ≤ k + 1 + |b| . (5)691
692

Proof. TSnq (k) is the time of visiting q for the (k + 1)’th time. In (4) this is at most bac693

steps beyond n. If we walk back bac steps to be within n, then at worst every step is a q694

and thus V nq (n) ≥ k + 1− bac ≥ k − a. In (5), for b ≥ 0, TSnq (k) is at most bbc steps before695

n. If we walk forward bbc steps to be beyond n, we can visit q at most bbc more times before696

crossing n and thus V nq (n) ≤ k + 1 + bbc ≤ k + 1 + b. The case b < 0 is trivial. J697

As final ingredients we need that the moments of the recurrence times are finite, and that698

the “setup time” to visit state q for the first time is negligible over increasing length infixes.699

I Lemma 30. The moments of Tnq (0) and Snq (r) are finite.700

Proof. By Perron’s theorem for positive matrices, the explicit formulas for the recurrence701

moments derived in [22] converge for finite Markov chains. J702

I Lemma 31. Tnq (0)/n
a.s.−−→ 0 as n→∞.703

Proof. By Lemma 30 the second moments of Tnq (0) are finite, and because there are finitely704

many states there is a constant C such that E((Tnq (0))2) ≤ C for all n ≥ 1. Thus705

E

∑
n≥1

(Tnq
(0)/n)2

 ≤ C∑
n≥1

1/n2 <∞706

which implies707 ∑
n≥1

(Tnq
(0)/n)2 <∞ a.s.708

and hence Tnq (0)/n
a.s.−−→ 0. J709

Now we are ready to prove our generalized ergodic theorem.710

Proof of Theorem 18. For every n, the Snq (r)’s are i.i.d. with expected value mq. Thus, by711

Theorem 17,712

SSnq (d nmq
e)/d nmq

e a.s.−−→ mq as n→∞,713
714

i.e., almost surely715

∀ε > 0∃δ∀n > δ : mq − ε ≤ SSnq (d nmq
e)/d nmq

e ≤ mq + ε .716
717

Inside the quantifiers we multiply d nmq
e, add Tnq (0), and derive718

n− ( nεmq
+ ε− Tnq

(0)) ≤ TSnq (d nmq
e) ≤ n+ ( nεmq

+mq + ε+ Tnq
(0)) .719

720

By applying Lemma 29 and dividing by n we obtain721

1
mq
−
(
ε
m + m+ε

n + Tn
q

(0)

n

)
≤ V nq (n)/n ≤ 1

mq
+
(
ε
m + 2+ε

n + Tn
q

(0)

n

)
.722

723

By Lemma 31 and suitably chosen ε, the terms in parenthesis can be made arbitrarily small724

for sufficiently large n. Thus, for any given ε′ > 0, almost surely 1
mq
−ε′ ≤ V nq (n)/n ≤ 1

mq
+ε′725

for sufficiently large n, proving the theorem. J726



20 Monitoring Event Frequencies

D Convergence Rate of the Mode727

I Proposition 32. Let p be a probability distribution over the alphabet {a, b} with p(a) > p(b).728

Let w be a random ω-word where every letter is i.i.d. according to p. Then P(mode(w..n) =729

a) ≥ 1− ρbn
2 c, for ρ = 1− (2p(a)− 1)2.730

Proof. Let us define the series pi = P(|w..i|a ≤ |w..i|b), qi = P(|w..i|a = |w..i|b), and731

ri = P(|w..i|a = |w..i|b + 1), giving the probabilities that a is not more frequent than b, a732

occurs as often as b, and a occurs once more than b among the first i letters in w, respectively.733

By definition we have, for all i ≥ 0:734

p2i =
i∑

j=0

(
2i
j

)
(1− p(a))2i−jp(a)j735

p2i+1 =
i∑

j=0

(
2i+ 1
j

)
(1− p(a))2i+1−jp(a)j736

q2i =
(

2i
i

)
(1− p(a))ip(a)i737

q2i+1 = 0738

r2i = 0739

r2i+1 =
(

2i+ 1
i+ 1

)
(1− p(a))ip(a)i+1 .740

741

Furthermore, observe that742

pi+1 = pi + (1− p(a))ri − p(a)qi . (6)743
744

We show that for each i > 0, p2i is dominated by a partial sum of the geometric series745

with initial value q2i and rate 0 ≤ 1−p(a)
p(a) < 1:746

p2i =
i∑

j=0

(
2i
j

)
(1− p(a))2i−jp(a)j747

≤
(

2i
i

) i∑
k=0

(1− p(a))i+kp(a)i−k748

=
(

2i
i

)
(1− p(a))ip(a)i

i∑
k=0

(
1− p(a)
p(a)

)k
749

≤
(

2i
i

)
(1− p(a))ip(a)i

∞∑
k=0

(
1− p(a)
p(a)

)k
750

= q2i
1

1− 1−p(a)
p(a)

751

= q2i
p(a)

2p(a)− 1 .752

753

Thus754

q2i ≥
2p(a)− 1

σ
p2i . (7)755
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We also have r2i+1 = 2i+1
i+1 p(a)q2i, which gives us756

r2i+1 ≤ 2p(a)q2i . (8)757

Now we show that p2i decreases at a constant rate:758

p2i+2 = p2i + (1− p(a))r2i+1 − p(a)q2i by (6)759

≤ p2i + 2(1− p(a))p(a)q2i − p(a)q2i by (8)760

= p2i + p(a)q2i − 2p(a)2q2i761

= p2i − (2p(a)− 1)p(a)q2i762

≤ p2i − (2p(a)− 1)2p2i by (7)763

= (1− (2p(a)− 1)2)p2i .764
765

Let ρ = 1− (2σ − 1)2. Since p0 = 1 and 0 ≤ ρ < 1, for all i ≥ 0 we get766

p2i ≤ ρi , (9)767

and knowing that r2i = 0, we get768

p2i+1 ≤ p2i , (10)769

which concludes our proof. J770
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