
Mixed-Time Signal Temporal Logic

Thomas Ferrère1, Oded Maler2, Dejan Ničković3

1 IST Austria, Klosterneuburg, Austria
2 VERIMAG, University of Grenoble, France

3 AIT Austrian Institute of Technology, Vienna, Austria

Abstract. We present Mixed-time Signal Temporal Logic (STL-mx),
a specification formalism which extends STL by capturing the discrete/
continuous time duality found in many cyber-physical systems (CPS), as
well as mixed-signal electronic designs. In STL-mx, properties of com-
ponents with continuous dynamics are expressed in STL, while speci-
fications of components with discrete dynamics are written in LTL. To
combine the two layers, we evaluate formulas on two traces, discrete- and
continuous-time, and introduce two interface operators that map signals,
properties and their satisfaction signals across the two time domains. We
show that STL-mx has the expressive power of STL supplemented with
an implicit T -periodic clock signal. We develop and implement an algo-
rithm for monitoring STL-mx formulas and illustrate the approach using
a mixed-signal example.

1 Introduction

Cyber-physical systems (CPS) typically combine together components with con-
tinuous dynamics (analog components, sensors, actuators) and components with
discrete dynamics (digital controllers, software, firmware). Models of (most) com-
ponents with discrete dynamics operate in discrete (clocked) time and manipu-
late values in a finite domain. In contrast, components with continuous dynamics
are modeled as operating in continuous time over real-valued variables. The in-
teraction between these two classes of heterogeneous components is typically
done via converters, which allow passing from one time and value domain to
another. For instance, analog and digital components in an analog mixed-signal
(AMS) design can be integrated by inserting analog-to-digital (A/D) and digital-
to-analog (D/A) converters providing the necessary interface, as illustrated in
Figure 1.4 The time and value domain differences between analog and digital
components pose difficult design and verification challenges.

While correctness evidence is imposed for safety-critical CPS applications
(see for example the automotive standard ISO 26262 [14]), CPS verification re-
mains an important bottleneck in the development process, resulting in up to
70% of the project effort. Verification of CPS in industry is almost exclusively
based on simulation, where each scenario can take several hours of simulation

4 This is a simplification of the AMS setting: not all interaction between analog and
digital components goes through A/D and D/A conversions.

time. Simulation traces are typically observed by verification engineers for cor-
rectness, resulting in a manual, ad-hoc and error-prone process.

Real values

Analog

Component

Digital

component

A/D

D/A

Discrete time

Discrete values

Continuous time

Fig. 1. A typical scenario in AMS design.

Specification-based monitoring is a pragmatic, yet rigorous approach for sys-
tematic simulation-based verification. Signal Temporal Logic (STL) [18,19] is a
declarative specification language for describing properties of CPS behaviors. As
an extension of the real-time temporal logics MTL [17] and MITL (Metric Inter-
val Temporal Logic [2]), STL allows us to reason about real-time properties of
real-valued signals. STL and its extensions have been used to specify and reason
about properties of systems coming from Industry 4.0, semiconductor, automo-
tive, avionics, medical devices and system and synthetic biology domains – see
the survey [4] for a detailed list of references.

While STL effectively provides support for combining Boolean and real-
valued signal properties, the time domain remains continuous for all signals.
Such specifications are not fully aligned with the actual practice in development
and integration of CPS where designers of discrete dynamics components often
reason about time in terms of clock ticks, and hence the natural logic to ex-
press digital properties is a discrete-time temporal logic. It would be extremely
counter-productive if verification engineers, due to few continuous/discrete dy-
namics interface properties, would have to transform all digital properties to
dense time. We propose a simple and transparent solution in which both time
models can co-exist. We illustrate the class of properties that motivate us via
the following example.

Example 1. Consider the following stabilization property for a CPS system with
sampling period T = 200. Whenever a discrete signal cmd is set up by the
digital controller from false to true, the absolute value of a continuous signal x
in an analog component must become lower than 1 within 600 time units and
remain continuously within that range for at least 300 time units. This informal
specification is illustrated in Figure 1.

4 5

1000

1 2 3

0 200 400 600 800

0

x

cmd

1

−1

Fig. 2. Illustration of a stabilization specification.

We propose Mixed-time Signal Temporal Logic (STL-mx) as a specification
language that extends STL to express properties both in terms of discrete log-
ical time (clock ticks) and dense real time. In essence, STL-mx consists of two
layers: (1) the standard discrete-time temporal logic LTL [22] for specification of
digital component properties; and (2) STL for specification of analog component
behaviors. To combine the two layers, we split the trace into a continuous-time
and discrete-time part, and introduce two time-mapping operators @cd and @dc

that formalize the conversions between continuous-time and discrete-time for-
mulas and signals. We then study the expressiveness of this formalism and show
that STL-mx can be effectively embedded into STL when provided with an
explicit sampling signal. We present an implementation of the monitoring algo-
rithm for STL-mx and demonstrate the utility of mixed-time specifications on
a case study from the AMS domain.

Related Work The main inspiration for this paper comes from the work that
introduces digital clocks into LTL [11]. That work does not consider continuous
interpretation of time, in contrast to this paper.

In the past years, there has been a rich body of work on various extensions of
MTL and STL. There, continuous-time specification languages were extended
with various quantitative semantics [12,13,9,1,15]. In particular, STL was then
extended with support for time-frequency properties [10] and freeze quantifi-
cation [8]. A first-order logic of signals [3] has been recently developed as a
generalization of STL and STL with freeze quantification. None of these exten-
sions considers both discrete and continuous time interpretation of the logic at
the same time.

The problem of different time domains has been also studied in other do-
mains. Ptolemy [5] provides a prototyping and simulation environment for mod-
elling heterogeneous systems that combine different models of computations.
We also mention the GEMOC initiative [6] that is promoting coordinated use of
modelling languages with possibly different models of computation, and hence
time domains.

2 Mixed-Time Signal Temporal Logic

In this section we introduce the syntax of STL-mx and its semantics over both
discrete-time and continuous-time signals. Since we are interested in monitoring
we focus on signals of bounded duration. Without loss of generality we assume
all digital signals in the circuit to range over the Booleans and analog signals to
range over the reals.

Let D be a value domain, typically B or R. A discrete-time signal w is a
function w : {0, 1, . . . , s} → D for s > 0. A continuous-time signal u is a
function u : [0, r)→ D for r > 0. We denote by |w| and |u| the length of signals
w and u, respectively. In the rest of this paper, we use r = |u| and s = |w|.
Relative to u and v, a sampling τ : {0, 1, . . . , s} is a monotonically increasing
sequence of times 0 = τ [0] < τ [1] < · · · < τ [r] < s ∈ R≥0. A sampling indicates
the times at which the discrete values are read. We say that the sampling τ is
periodic (with period T ∈ R>0) when τ [i] = iT for all i ∈ {0, 1, . . . , s}.

A sequence of disjoint non-empty intervals I0 ·I1 · · · Ik is a time partition com-
patible with a finitely-varying continuous-time Boolean signal x if (1)

⋃
0≤j≤k Ij =

[0, |x|) and (2) Each Ij is of the form (tj , tj+1), [tj , tj+1), (tj , tj+1] or [tj , tj+1]
such that tj ≤ tj+1, ∀t, t′ ∈ Ij , x(t) = x(t′). The coarsest time partition associ-
ated with x satisfies the additional property: (3) Whenever t ∈ Ij and t′ ∈ Ij+1

then x(t) 6= x(t′).
Let P = {p1, . . . , pm} be a set of Boolean variables and let X = {x1, . . . , xn}

be a set of real valued variables. A constraint over X is a predicate of the form
x ≺ c, where x ∈ X,≺∈ {<,≤,=,≥, >} and c ∈ Q. A mixed-time signal temporal
logic (STL-mx) formula ψ is either a continuous-time formula α or a discrete-
time formula ϕ defined over X and P according to the following grammar5

α ::= x ≺ c | ¬α | α1 ∨ α2 | α1UIα2 | α1SIα2 | @dc(ϕ)
ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | 2ϕ | �ϕ | ϕ1 Uϕ2 | ϕ1 Sϕ2 | @cd(α)

where 2, �, U and S are temporal next, previous, until and since operators,
p ∈ P , x ∈ X, c ∈ Q and I is an interval of the form [a, b], [a, b), (a, b], (a, b),
[a,∞) or (a,∞) where 0 ≤ a < b are rational numbers.

We can define other usual operators 1I (eventually), 0I (always), QI

(once), and `I (historically) as syntactic abbreviations with1I ϕ := trueU Iϕ,
0I ϕ := ¬1I ¬ϕ, and likewise for past operators – discrete time syntax can
be enriched with corresponding constructs. Note that timing interval subscripts
may be omitted in when equal to [0,+∞).

Example 2. We formalize the stabilization property from Example 1 by the fol-
lowing STL-mx formula:

0(((�¬cmd) ∧ cmd)→ @cd(1[0,600]0[0,300](|x| < 1)))
5 We use the same symbols for Boolean and temporal connectives in both continuous-

time and discrete-time formulas. The distinction between the two layers is defined by
the context. Note that each valid formula is classified unambiguously as discrete-time
or continuous-time.

Let w be a discrete-timem-dimensional Boolean signal and u be a continuous-
time real-valued n-dimensional signal, which we assume such that uτ [i] ∈ [0, r)
for all i ∈ {0, 1, . . . , s}. We denote by πp(w) and πx(u) the respective projections
of w and u on variables p and x. Conversely, for w and w′ over the same time
domain we denote by w‖w′ the pairing of signals w and w′, such that πv(w‖w′) =
πv(w) when variable v is a dimension of w and πv(w‖w′) = πv(w

′) when v is a
dimension of w′. Finally, we use ⊕ for the Minkowski sum of intervals, that is,
[a1, b1]⊕ [a2, b2] = [a1 + a2, b1 + b2].

In what follows, we assume a sampling τ given independently and globally
defined. The semantics of a discrete-time STL-mx formula ϕ with respect to
signals w and u is described via the satisfaction relation (w, u, i) |=d ϕ, indicating
that signals w and u satisfy ϕ at discrete time index i. Similarly, the semantics
of a continuous-time STL-mx formula α with respect to signals w and u is
described via the satisfaction relation (w, u, t) |=c α, indicating that signals w
and u satisfy α at time t. These relations are defined recursively below.

(w, u, i) |=d p ↔ πp(w)[i] = 1
(w, u, i) |=d ¬ϕ ↔ (w, u, i) 6|=d ϕ
(w, u, i) |=d ϕ1 ∨ ϕ2 ↔ (w, u, i) |=d ϕ1 or (w, u, i) |=d ϕ2

(w, u, i) |=d2ϕ ↔ i < |w| and (w, u, i+ 1) |=d ϕ
(w, u, i) |=d�ϕ ↔ i > 0 and (w, u, i− 1) |=d ϕ
(w, u, i) |=d ϕ1 Uϕ2 ↔ ∃i ≤ i′ < |w| s.t. (w, u, i′) |=d ϕ2 and

∀ i ≤ i′′ < i′, (w, u, i′′) |=d ϕ1

(w, u, i) |=d ϕ1 Sϕ2 ↔ ∃0 ≤ i′ ≤ i s.t. (w, u, i′) |=d ϕ2 and
∀ i′ < i′′ ≤ i, (w, u, i′′) |=d ϕ1

(w, u, i) |=d @cd(α) ↔ (w, u, τ [i]) |=c α

(w, u, t) |=c x ≺ c ↔ πx(u)[t] ≺ c
(w, u, t) |=c ¬α ↔ (w, u, t) 6|=c α
(w, u, t) |=c α1 ∨ α2 ↔ (w, u, t) |=c α1 or (w, u, t) |=c α2

(w, u, t) |=c α1UIα2 ↔ ∃t′ ∈ (t⊕ I) ∩ [0, |u|) s.t. (w, u, t′) |=c α2 and
∀ t′′ ∈ (t, t′), (w, u, t′′) |=c α1

(w, u, t) |=c α1SIα2 ↔ ∃t′ ∈ (t	 I) ∩ [0, |u|) s.t. (w, u, t′) |=c α2 and
∀ t′′ ∈ (t′, t), (w, u, t′′) |=c α1

(w, u, t) |=c @dc(ϕ) ↔ (w, u, argmaxi∈{0,1,...,s}τ [i] ≤ t) |=d ϕ

We use (w, u) |= ψ as a shorthand for (w, u, 0) |=d ψ or (w, u, 0) |=c ψ according
to the type of ψ. Based on these definitions and given a pair (w, v) we associate
with each discrete-time formula ϕ and a continuous-time formula α their respec-
tive Boolean satisfaction signals wϕ and uα such that for all i ∈ {0, 1, . . . , s} and
t ∈ [0, r), wϕ[i] = 1 iff (w, u, i) |=d ϕ and uα[t] = 1 iff (w, u, t) |=c α.

As we see, temporal operators inherit their semantics from LTL and STL.
The semantics of new interface operators @cd and @dc are illustrated in Figure 3.

0 1 2 3 4 50 100 200

0 100 2000 1 2 3 4 5

y p

yp

(a) (b)

Fig. 3. Semantics of (a) p = @cd(y) and (b) y = @dc(p) for T = 50.

We remark that the choice of whether the top level STL-mx formula is
continuous-time or discrete-time is typically application-dependent. Expressing
a property of a discrete-time component (e.g. a controller) that drives another
continuous-time component (e.g. a plant) usually results in a discrete-time top-
level formula, and vice versa.

We now point out some properties of this logic. We say that two discrete-time
formulas ϕ1 and ϕ2 are equivalent, denoted by ϕ1 ∼ ϕ2 if for all signals u, w
and time indexes i we have (w, u, i) |=d ϕ1 ↔ (w, u, i) |=d ϕ2. The equivalence
between continuous-time formulas is defined similarly. It should be obvious that
by converting a discrete-time formula into a continuous-time one, and in turn
converting it back to a discrete-time formula we do not alter the meaning of the
original formula. We illustrate this observation with the continuous-time signal
(i.e. propositional formula) y = @dc(p) from Figure 3 (b) obtained by converting
the discrete-time signal p – it is clear that translating y back to a discrete-time
signal yields p.

Proposition 1. Any discrete-time formula ϕ satisfies @cd(@dc(ϕ)) ∼ ϕ.

This stems directly from the fact that any time index i ∈ {0, 1, . . . , s} verifies
argmaxj∈{0,1,...,n}τ [j] ≤ τ [i] = i. Conversely, for some time t ∈ R we generally do

not have τargmaxj∈{0,1,...,n}τ [j]≤t = t hence nothing can be said of @dc(@cd(α)) as
compared with α, perhaps except for being a piecewise-constant approximation
of its satisfaction signals.

Notwithstanding, time mapping operators commute with propositional con-
nectives. For instance, first negating the propositional formula y from Figure 3
(a) and than coverting it to a discrete time formula is equivalent to first con-
verting y to a discrete time formula and then doing the negation.

Proposition 2. The following equivalences hold for any discrete-time formulas
ϕ,ϕ1, ϕ2 and continuous-time formulas α, α1, α2:

@dc(¬ϕ) ∼ ¬@dc(ϕ) @dc(ϕ1 ∨ ϕ2) ∼ @dc(ϕ1) ∨@dc(ϕ2)
@cd(¬α) ∼ ¬@cd(α) @cd(α1 ∨ α2) ∼ @cd(α1) ∨@cd(α2)

Checking these facts is straightforward, let us for instance prove the first equiv-
alence. Taking w, u some discrete and continuous signals and a time instant t,

we have (w, u, t) |=c @dc(¬ϕ) ↔ (w, u, argmaxj∈{0,1,...,n}τ [j] ≤ t) |=d ¬ϕ ↔
(w, u, argmaxj∈{0,1,...,n}τ [j] ≤ t) 6|=d ϕ ↔ (w, u, t) 6|=c @dc(ϕ) ↔ (w, u, t) |=c

¬@dc(ϕ).
As expected, temporal operators do not enjoy such properties. The following

section may provide more insight in this respect.

3 Expressivity

STL-mx has similar expressive power as STL when supplemented by a “digital
clock”, as we show in the following.

Let w be a discrete signal. We say that a continuous signal wτ is the right-
continuation of w when wτ [t] = w[argmaxj∈{0,1,...,n}τ [j] ≤ t] for all t ∈ [0, r).

Note that on discrete Boolean signals, the interpretation of @dc is exactly right-
continuation with period T . Conversely, the interpretation of @cd is the sampling
of continuous signals at absolute times τ [i], i ∈ {0, 1, . . . , s}. For this purpose, let
us introduce a special continuous Boolean signal clk with the following definition:

clk : t 7→
{

1 when t = τ [i] for some i ∈ {0, 1, . . . , s}
0 otherwise

Following definitions of Section 2, let us define STL to be continuous-time
STL-mx formulas without discrete-time sub-formulas. For a continuous signal u,
a time t, and an STL formula α the standard STL semantics reads (∅, u, t) |=c α.

We now inductively define a syntactical mapping σ from STL-mx to STL
formulas:

σ(p) = p σ(@cd(α)) = ¬clk S̃ (clk ∧ σ(α))

σ(2ϕ) = ¬clkU (clk ∧ σ(ϕ)) σ(¬ϕ) = ¬σ(ϕ)

σ(�ϕ) = ¬clkS (clk ∧ σ(ϕ)) σ(ϕ1 ∨ ϕ2) = σ(ϕ1) ∨ σ(ϕ2)

σ(ϕ1 Uϕ2) = σ(ϕ2) ∨ (σ(ϕ1)U (0,+∞)σ(ϕ2))

σ(ϕ1 Sϕ2) = σ(ϕ2) ∨ (σ(ϕ1) ∧ σ(ϕ1)S (0,+∞)(σ(ϕ2)S (0,+∞)true))

σ(x ≺ c) = x ≺ c σ(@dc(ϕ)) = σ(ϕ)

σ(α1 U Iα2) = σ(α1)U Iσ(α2) σ(¬α) = ¬σ(α)

σ(α1 S Iα2) = σ(α1)S Iσ(α2) σ(α1 ∨ α2) = σ(α1) ∨ σ(α2)

This mapping is such that an STL-mx formula ψ is satisfied by some signal
if and only if its STL translation is satisfied by the right-continuation of the
discrete signal, paired with the original continuous signal and the clock. Note
that in STL p is associated with a continuous-time satisfaction signal.

Example 3. The stabilization property (2) is mapped into the following STL
formula.

0((¬clkS (clk ∧ ¬cmd)) ∧ cmd)→ (¬clk S̃ (clk ∧1[0,600]0[0,300] |x < 1|))

Theorem 1. Let w be a discrete-time signal and let u be a continuous-time
signal. Taking wτ as the right-continuation of w, we have:

1. for any discrete-time STL-mx formula ϕ and i ∈ N

(w, u, i) |=d ϕ iff (∅, wτ‖u‖clk, τ [i]) |=c σ(ϕ)

2. for any continuous-time STL-mx formula α and t ∈ R≥0

(w, u, t) |=c α iff (∅, wτ‖u‖clk, t) |=c σ(α)

Proof. (1) and (2) are shown conjointly by induction on the formula structure.
For propositions in P we have πp(w

τ)[τ [i]] = πp(w)[i] from the definition of wτ .
Boolean connectives naturally commute with the right-continuation operation as
seen in Proposition 2. Now looking at the 2 operator, we can check that for a
discrete-time formula ϕ and a discrete signal w, the right-continuation of w2ϕ

requires that wϕ holds at the previous discrete time value. Operator � is sym-
metrical. The discrete until does not pose any problem. For the discrete since,
note that its continuous counterpart S (0,∞) has left-continuous semantics. No-
tably, rather than looking for a witness of ϕ2 at some time t′ in the past, we look
for a time t′ such that ϕ2 holds immediately before; this is done by the formula
σ(ϕ2)S (0,+∞)true. Concerning operator @dc, the translation states the contin-
uous formula α was true on the previous clock tick. For pure continuous-time
operators, semantics are unchanged so we only apply recursively the transla-
tion to treat possible discrete sub-formulas. Finally, the @cd operator performs
a right-continuation operation, hence we only need to translates discrete-time
formulas it applies to.

Corollary 1. For a periodic sampling τ [i] = iT , the satisfaction of an STL-mx
formula by a signal reduces (in polynomial time) to the satisfaction of an STL
formula.

Proof. A T -periodic clock is definable in STL by the formula

δT := clk ∧0(clk→ (0(0,T) ¬clk ∧1(0,T] clk))

Assuming such a clock signal, we may impose on any Boolean signal p to be a
T -period right-continuation signal using the formula

γp := 0

(
((¬pS (0,+∞)true ∧ p)→ clk) ∧ ((pS (0,+∞)true ∧ ¬p)→ clk)
∧ (p → pU (0,+∞)true) ∧ (¬p → ¬pU (0,+∞)true)

)
The two first conjuncts ensure that left-discontinuities can only occur on clock
ticks, while the last two conjuncts enforce right-continuity. Now given some STL-
mx formula ψ, we construct the STL formula

ψ′ := σ(ψ) ∧ δT ∧
∧
p∈P

γp

It follows from Theorem 1 that ψ is satisfied if and only if ψ′ is satisfied. Clearly
the size of ψ′ is linear in the size of ψ.

4 Monitoring STL-mx

In this section, we present the monitoring procedure for STL-mx. Like previous
work on STL monitoring [21], our procedure is closely related to the idea of
temporal testers advocated in [16,24] for discrete time and dating, in fact, back
to [23]. These are acausal transducers that realize the semantics of the temporal
logic operators as follows. For an operator OP interpreted over time domain T,
the temporal tester TOP takes as input a Boolean T-signal y and outputs another
Boolean signal y′ such that if y is the satisfaction signal of some formula ϕ then
y′ is the satisfaction signal of OPϕ. For example the tester for next in discrete
time realizes a forward shift, that is, y′[i] = y[i + 1]. A temporal tester for a
compound temporal logic formula ϕ is obtained by composing temporal testers
for the basic operators, following the parse tree of the formula.

Testers have been proposed for several temporal logics, in particular for LTL
[24] and MITL [20]. The monitoring procedure for STL described in [19] fol-
lows closely the temporal testers paradigm although the transduction function
is computed directly on signals, without explicit construction of automata as in
[20]. The compositional structure of temporal testers allows us to fully separate
the monitoring of the LTL and STL components of an STL-mx formula and
reuse existing results. We focus in this paper on the construction of temporal
testers for the two additional operators @cd and @dc that interface discrete and
continuous time. We refer the reader to [24,20,19] for details regarding the other
operators. A high-level overview of the procedure as applied to the stabilization
formula (2) is provided in Figure 4.

T = 200

STL monitor

cmd

x

LTL monitor

STL-mx monitor

Time mapping operator

∧ →

@cd

< 1

¬

0[0,300] ♦[0,600]| · |

�

Fig. 4. Monitor based on temporal testers for formula (2).

The temporal tester T@cd , realizing the semantics of the @cd operator, takes as
input a continuous-time Boolean signal u, and outputs a discrete-time Boolean

signal w obtained by sampling u at multiples of T . The computation, based on
a time partition I0 · I1 · · · In compatible with u, is illustrated in Algorithm 1.

Algorithm 1 Temporal tester T@cd .

Require: Continuous Boolean signal u, a sampling period T
Ensure: Discrete Boolean signal w = @cd(u)
1: k ← 0
2: for j = 0 to n do
3: while τ [k] ∈ Ij do
4: w[k]← u(Ij)
5: k ← k + 1
6: end while
7: end for
8: return w

Proposition 3. Given a satisfaction signal y of a continuous-time formula α,
a time index i, we have that T@cd(y)[i] = 1 if and only if the satisfaction signal
u@cd(α) [i] = 1.

The temporal tester T@dc , realizing the semantics of the @dc operator, takes as
input a discrete Boolean signal w and outputs a continuous-time Boolean signal
u which “extends” the value of w at every time index i by holding it throughout
the interval [τ [i], τ [i + 1]). The procedure for computing T@dc is illustrated in
Algorithm 2. Note that the time partition created by the procedure is not the
coarsest one compatible with u and it can be minimized later for efficiency.

Algorithm 2 Temporal tester T@dc .

Require: Discrete Boolean signal w, sampling period T
Ensure: Continuous Boolean signal u, the right continuation of w
1: k ← 0
2: for j = 0 to |w| do
3: Ik ← [τ [j], τ [j + 1])
4: u[Ik]← w[j]
5: end for
6: return u

Proposition 4. Given a discrete-time Boolean signal p, a time t and a sam-
pling period T , we have that T@dc(p)[t] = 1 if and only if the satisfaction signal
w@dc(p) [t] = 1.

For every other operator OP in the syntax, we already dispose of a transducer
TOP with the corresponding lemma. We can now state the main result that our
monitoring procedure computes the appropriate satisfaction signals.

Theorem 2. Let w and u be discrete-time and continuous time-signals and let
T be a sampling period. Then

1. For a discrete-time STL-mx formula ϕ, Tϕ(w, u) = wϕ;
2. For a continuous-time STL-mx formula α, Tα(w, u) = uα.

We implemented the monitoring procedure for STL-mx formulas, following
the structure shown in Figure 4 and applying STL-mx operations directly to
discrete-time and continuous-time signals. The implementation consists of three
layers: an LTL monitor, an STL monitor and the time mapping operations.
Keeping the separation between the three layers allows us to monitor not only
STL-mx specifications, but also its LTL and STL subsets for purely digital and
analog applications, respectively. The implementation was written in C++ for
GNU/Debian Linux x86 machines.

5 Case Study

We applied the monitoring implementation for STL-mx to verify basic proper-
ties of a simplified model of a ∆-Σ modulator, a basic component in analog to
digital conversion. The circuit has an analog input, and a clocked digital output
for typical integration in an ADC circuit. It is composed of the following build-
ing blocks: subtractor, integrator, threshold, and pulse generator. The overall
architecture appears at Figure 5.

+ Integrator Threshold
uΣ

Pulse

uin u∆ pout

−

upls

pclk

Fig. 5. Block diagram for the ∆-Σ modulator

The input voltage is first summed with the negated output of the control
loop. The resulting voltage is integrated over time; when a value superior to a
constant v0 is reached, a threshold crossing is detected and we see a rising edge in
the output. This signal is used to generate a pulse which is subtracted from the
input, closing the loop. The effect is that during this pulse the integral sharply
goes back below the threshold, and the cycle goes on. In addition, a clock is
introduced so as to facilitate synchronization of the digital output. It is placed
at the threshold detection level; rather than precisely detecting a crossing we

simply test for crossings on clock edges. Here is a short mathematical description
of the idealized components realizing this behavior:

u∆[t] = uin[t]− upls[t] (substractor)

uΣ [t] = A ·
∫ t

0

u∆[t′] dt′ (integrator)

pout[i] =

{
1 if uΣ [i T] ≥ v0
0 otherwise

(threshold)

upls[t] =

v1 if pout[b tT c − 1] = 0 and pout[b tT c] = 1
and t− b tT c · T ≤ Tpls

v0 otherwise
(pulse)

where T = 3.2µs is the period. We can see that in our model, the output is
clocked with a frequency of 312 500Hz. The integrator gain is set to A = 105, the
voltage threshold is v0 = 0.0V. The pulse generator outputs piecewise constant
signals, with high voltage of v1 = 3.3V and hold time of Tpls = 2.5µs. We have
implemented the circuit as a mixed-signal model using Mentor Graphics’ Questa
ADMS [7] and simulated it against a variety of input signals. The simulation
traces thus generated have been monitored with respect to STL-mx properties
by our implementation of the procedure described in this paper.

Fig. 6. Simulation trace (w1, u1) extracted with uin : t 7→ 0.6 cos(1000 · 2π · t) + 0.6.

We start with the following safety property:

Property 1. When we observe a rise in the output, the voltage out of the inte-
grator has to return to a value below the threshold at the next clock tick.

Fig. 7. Simulation trace (w2, u2) extract with uin : t 7→ 0.7 cos(1000 · 2π · t) + 0.7

This property is expressed in STL-mx as:

ψ1 := 0((�¬pout ∧ pout)→2@cduΣ < v0)

The specification ψ1 would be used during the integration steps of the design
cycle so as to check that the input applied to the ∆-Σ modulator has a range
conforming to its sampling capabilities.
First we simulate the design with a sinusoidal input at rate 1kHz and amplitude
0.6V; this gives us the trace (w1, u1) of Fig. 5. The circuit appears to behave
adequately, and we have (w1, u1) |= ψ1. When we modify slightly the input
by setting the amplitude to 0.7V; the simulation produces the trace (w2, u2)
of Fig. 5. We can detect a failure of our second property around 420µs, as the
signal uΣ goes back above v0 within a single clock period. In our implementa-
tion the signal uΣ would then indefinitely stay above the threshold, stalling the
modulation. The algorithm that concludes that (u2, w2) 6|= ψ1.

The ∆-Σ modulator should also verify some some functional specifications,
for instance:

Property 2. When the input voltage is above 1.05V for 12.8µs the output must
have a sequence of two consecutive spikes starting over that time frame.

Such a property, which can be used during the design phase of the ∆-Σ modu-
lator itself, ia expressed as the following STL-mx formula:

ψ2 := 0(0[0,12.8] uin > 1.05→1[0,12.8] @dc(¬pout∧2 pout∧22 ¬pout∧23 pout))

We test this specification on our design for several inputs of the form t 7→
A1 cos(f1 · 2π · t) + A2 cos(f2 · 2π · t) + B with A1 + A2 + B = 1.2 and f1, f2

ranging from 500Hz to 10kHz. The property is satisfied as long as the frequency
in the input stays small; on the other hand rapidly varying signals introduce
quantization uncertainty, and the property no longer holds. In all 6 simulation
scenarios, we were able to show that ψ2 is satisfied.

Table 1. STL-mx monitoring execution times.

Property Sim. nb. uΣ uin pout time (ms)

ψ1 1 20 470 727 143
ψ1 2 2 771 58 104
ψ2 3 26 207 971 45
ψ2 4 27 926 971 50
ψ2 5 29 495 971 51
ψ2 6 31 298 1 212 58
ψ2 7 32 133 1 212 59
ψ2 8 33 005 1 212 61

In Table 1, we present the evaluation of the STL-mx implementation to
the ∆-Σ modulator case study. The experiments were done on an Intel Core
i7-2620M CPU @ 2.7GHz machine with 8GB of RAM with the Windows 7
Enterprise operating system. The implementation was executed on Ubuntu 13.04
Linux operating system running on the Windows VMware Player 5.0.2 virtual
machine. The table shows for a given STL-mx property, the size of the input
signals in terms of the number of samples and the execution for monitoring
the property, measured in milliseconds. The evaluation results show that the
monitoring procedure induces minimal overhead, since for both properties ψ1

and ψ2, the time needed to monitor input of size ranging between 21, 000 and
35, 000 samples never exceeded 150 milliseconds.

Finally, we compare the STL-mx specification ψ2 to the STL specification
ψ′2 = σ(ψ2), where

ψ′2 := 0(0[0,12.8] uin > 1.05→1[0,12.8](¬pout ∧ (¬clkU (clk ∧ pout))∧
(¬clkU clk ∧ (¬clkU (clk ∧ ¬pout)))∧
(¬clkU clk ∧ (¬clkU (clk ∧ (¬clkU (clk ∧ pout))))

This example demonstrates the potential value of explicitely separating the two
time domains in specifications, which results in formulas that are more succint
and easier to read.

6 Concluding Remarks

We have introduced very useful syntactic and semantic constructs that provide
for co-existence of discrete and continuous-time specifications for runtime moni-
toring of CPS and mixed signal designs. This work is a first step toward a frame-
work for system-wide specification-based verification, covering both discrete-
time, bounded-value and continuous-time, real-valued domains. We studied the

theoretical properties of this mixed-time logic STL-mx and extended a monitor-
ing framework to handle these two time domains. We demonstrated the usability
of the methodology and tool on a case-study. As for the future one may think
of the following directions:

1. Automatic insertion of @cd and @dc conversion operators based on type in-
ference so as to facilitate further the expression of properties by the user;

2. Studying other conversion operators, more sophisticated than the currently
used periodic sample and hold. For example, the truth value of a discrete-
time signal at i can be based on integrating values at continuous time in
some interval around iT . One can also think of event-based conversion in
asynchronous style, unlike this work that focused on clocked digital compo-
nents;

3. Studying a tighter interaction between the monitoring procedure and the
simulators that generate the heterogeneous traces.

4. Equpping STL-mx with quantitative semantics. We expect that adding
quantitative semantics based on the infinity norm to STL-mx shall be straight-
forward. However, we will need to investigate whether the basic properties
of the language would be still preserved under this quantitative semantics.
In addition, it would be an interesting challenge to add a more cumulative
or average-based semantics to the specification language.

Acknowledgments This research was supported in part by the Austrian Sci-
ence Fund (FWF) under grants 27 S11402-N23 (RiSE/SHiNE) and Z211-N23
(Wittgenstein Award), and by the Productive 4.0 project (ECSEL 737459). The
ECSEL Joint Undertaking receives support from the European Union’s Horizon
2020 research and innovation programme and Austria, Denmark, Germany, Fin-
land, Czech Republic, Italy, Spain, Portugal, Poland, Ireland, Belgium, France,
Netherlands, United Kingdom, Slovakia, Norway.

References

1. Akazaki, T., Hasuo, I.: Time robustness in MTL and expressivity in hybrid system
falsification. In: Computer Aided Verification - 27th International Conference, CAV
2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II. pp. 356–374
(2015). https://doi.org/10.1007/978-3-319-21668-3 21

2. Alur, R., Feder, T., Henzinger, T.: The benefits of relax-
ing punctuality. Journal of the ACM 43(1), 116–146 (1996).
https://doi.org/http://doi.acm.org/10.1145/227595.227602

3. Bakhirkin, A., Ferrère, T., Henzinger, T.A., Nickovic, D.: The first-order logic of
signals: keynote. In: Proceedings of the International Conference on Embedded
Software, EMSOFT 2018, Torino, Italy, September 30 - October 5, 2018. p. 1
(2018). https://doi.org/10.1109/EMSOFT.2018.8537203

4. Bartocci, E., Deshmukh, J.V., Donzé, A., Fainekos, G.E., Maler, O., Nick-
ovic, D., Sankaranarayanan, S.: Specification-based monitoring of cyber-physical
systems: A survey on theory, tools and applications. In: Lectures on Run-
time Verification - Introductory and Advanced Topics, pp. 135–175 (2018).
https://doi.org/10.1007/978-3-319-75632-5 5

https://doi.org/10.1007/978-3-319-21668-3_21
https://doi.org/http://doi.acm.org/10.1145/227595.227602
https://doi.org/10.1109/EMSOFT.2018.8537203
https://doi.org/10.1007/978-3-319-75632-5_5

5. Buck, J.T., Ha, S., Lee, E.A., Messerschmitt, D.G.: Ptolemy: A framework for
simulating and prototyping heterogenous systems. Int. Journal in Computer Sim-
ulation 4(2) (1994)

6. Combemale, B., DeAntoni, J., France, R.B., Barn, B., Clark, T., Frank, U., Kulka-
rni, V., Turk, D. (eds.): Joint Proceedings of the First International Workshop
On the Globalization of Modeling Languages (GEMOC 2013) and the First In-
ternational Workshop: Towards the Model Driven Organization (AMINO 2013)
Co-located with the 16th International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS 2013), Miami, USA, September 29 - Oc-
tober 04, 2013, CEUR Workshop Proceedings, vol. 1102. CEUR-WS.org (2013),
http://ceur-ws.org/Vol-1102

7. Graphics Corporation, M.: Questa ADMS. http://www.mentor.com/products/

fv/advance_ms/

8. Dluhos, P., Brim, L., Safránek, D.: On expressing and monitoring oscillatory dy-
namics. In: HSB. pp. 73–87 (2012). https://doi.org/10.4204/EPTCS.92.6

9. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Formal Modeling and Analysis of Timed Systems (FORMATS). pp. 92–106
(2010). https://doi.org/10.1007/978-3-642-15297-9 9

10. Donzé, A., Maler, O., Bartocci, E., Nickovic, D., Grosu, R., Smolka, S.A.:
On temporal logic and signal processing. In: ATVA. pp. 92–106 (2012).
https://doi.org/10.1007/978-3-642-33386-6 9

11. Eisner, C., Fisman, D., Havlicek, J., McIsaac, A., Campenhout, D.V.: The
definition of a temporal clock operator. In: ICALP. pp. 857–870 (2003).
https://doi.org/10.1007/3-540-45061-0 67

12. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications. In:
Formal Approaches to Software Testing and Runtime Verification, First Com-
bined International Workshops, FATES 2006 and RV 2006, Seattle, WA,
USA, August 15-16, 2006, Revised Selected Papers. pp. 178–192 (2006).
https://doi.org/10.1007/11940197 12

13. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications
for continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009).
https://doi.org/10.1016/j.tcs.2009.06.021

14. ISO 26262:2011: Road Vehicles – Functional Safety. ISO, Geneva, Switzerland

15. Jaksic, S., Bartocci, E., Grosu, R., Nickovic, D.: Quantitative monitoring of STL
with edit distance. In: Runtime Verification - 16th International Conference, RV
2016, Madrid, Spain, September 23-30, 2016, Proceedings. pp. 201–218 (2016).
https://doi.org/10.1007/978-3-319-46982-9 13

16. Kesten, Y., Pnueli, A.: A compositional approach to CTL* verification. Theor.
Comput. Sci. 331(2-3), 397–428 (2005). https://doi.org/10.1016/j.tcs.2004.09.023

17. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-time
systems 2(4), 255–299 (1990). https://doi.org/10.1007/BF01995674

18. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals.
In: FORMATS/FTRTFT. pp. 152–166 (2004). https://doi.org/10.1007/978-3-540-
30206-3 12

19. Maler, O., Nickovic, D.: Monitoring properties of analog and mixed-signal circuits.
STTT 15(3), 247–268 (2013). https://doi.org/10.1007/s10009-012-0247-9

20. Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: For-
mal Modeling and Analysis of Timed Systems. pp. 274–289. Springer (2006).
https://doi.org/10.1007/11867340 20

http://ceur-ws.org/Vol-1102
http://www.mentor.com/products/fv/advance_ms/
http://www.mentor.com/products/fv/advance_ms/
https://doi.org/10.4204/EPTCS.92.6
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-33386-6_9
https://doi.org/10.1007/3-540-45061-0_67
https://doi.org/10.1007/11940197_12
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1007/978-3-319-46982-9_13
https://doi.org/10.1016/j.tcs.2004.09.023
https://doi.org/10.1007/BF01995674
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/s10009-012-0247-9
https://doi.org/10.1007/11867340_20

21. Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of discrete, timed
and continuous behaviors. In: Pillars of Computer Science. pp. 475–505 (2008).
https://doi.org/10.1007/978-3-540-78127-1 26

22. Manna, Z., Pnueli, A.: Temporal Logic. Springer (1992)
23. Michel, M.: Computation of temporal operators. Logique et Analyse 110-111,

137–152 (1985)
24. Pnueli, A., Zaks, A.: On the merits of temporal testers. In: 25 Years of Model

Checking. pp. 172–195 (2008). https://doi.org/10.1007/978-3-540-69850-0 11

https://doi.org/10.1007/978-3-540-78127-1_26
https://doi.org/10.1007/978-3-540-69850-0_11

	Mixed-Time Signal Temporal Logic

