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ABSTRACT
Fault-localization is considered to be a very tedious and time-

consuming activity in the design of complex Cyber-Physical Sys-

tems (CPS). This laborious task essentially requires expert knowl-

edge of the system in order to discover the cause of the fault. In

this context, we propose a new procedure that aids designers in

debugging Simulink/Stateflow hybrid system models, guided by

Signal Temporal Logic (STL) specifications. The proposed method

relies on three main ingredients: (1) a monitoring and a trace diag-

nostics procedure that checks whether a tested behavior satisfies or

violates an STL specification, localizes time segments and interfaces

variables contributing to the property violations; (2) a slicing proce-

dure that maps these observable behavior segments to the internal

states and transitions of the Simulink model; and (3) a spectrum-

based fault-localization method that combines the previous analysis

from multiple tests to identify the internal states and/or transitions

that are the most likely to explain the fault. We demonstrate the

applicability of our approach on two Simulink models from the

automotive and the avionics domain.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; •Computingmethodologies→Model verification and
validation;
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1 INTRODUCTION
The development of CPS is a complex process involving several

stages. In the concept phase of the design, the engineers often use

the MathWorks™ Simulink toolset to model the CPS functionality.
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These models are sophisticated hybrid systems – they involve an

intricate interaction between the continuous and discrete dynamics.

The verification and testing of Simulink/Stateflow CPS models is

a challenging task that has received considerable attention in recent

years. Falsification-based testing [2, 7, 25, 27] is a well-established

technique to efficiently find bugs in Simulink/Stateflow models.

This method uses a formal specification, expressed in a language

such as Signal Temporal Logic (STL) [17], and a monitor, checking

each simulation trace for correctness against the specification and

optionally providing an indication as to how far the trace is from

violation. While falsification-based testing has proven effective in

finding input sequences that result in specification violations, it

does not provide additional information that would help to localize

the error within the model and thus aid the debugging process.

Conventionally, debugging is a tedious and time-consuming

activity during the design of CPS. When observing some faulty

behavior in the simulation trace of a model, the engineer first needs

to localize the fault in order to correct the model. This manual

fault-localization process is a cumbersome activity and generally

requires a well-trained and expert engineer to discover the cause

of the problem. When the system is modeled in Simulink/Stateflow,

the engineer can use the Model Slicer component of the Simulink

Design Verifier [19] to identify components that were active during

specified time intervals. Nevertheless, this tool still requires con-

siderable manual interaction and in particular requires to visually

identify and mark time intervals of interest.

In this paper we propose a novel automated procedure that

aids the designer in localizing Simulink/Stateflow faults from sim-

ulations that violate STL specifications. We build our approach

on top of the trace diagnostics method of [8] that isolates small

segments of simulation traces sufficient to imply the violation of

STL specification. This black-box technique ignores the model, but

provides valuable spatial and temporal information about the in-

terface variables associated with the fault and the times of their

critical involvement. We then use model slicing [23] to identify

model components that influence the marked variables, and prop-

agate the trace diagnostics information to these components. We

repeat this procedure over all the (failed) tests in the test suite,

and use spectrum-based fault localization [1] to find the internal

states and/or transitions that are the most likely to cause the fault.

Spectrum-based fault localization is a lightweight statistical tech-

nique that analyzes passed and failed tests to rank model variables

according to their suspiciousness. To the best of our knowledge,

this is the first application of spectrum-based fault localization in

https://doi.org/10.1145/3178126.3178131
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conjunction with a sophisticated logic-based oracle (here a tempo-

ral logic monitor). This enables us to refine the set of variables fed

to the method, and substantially improve the outcome.

1.1 Overview
The proposed approach consists of three main steps: (1) specifica-

tion monitoring and trace diagnostics; (2) model slicing; and (3)

spectral analysis. We assume a hybrid system given in the form of

a Simulink/Stateflow model, and a set of tests each consisting of an

input trace and an STL specification, used as an oracle.

PASS

FAIL

Epoch Diagnostic

(c) Diagnostic

(a)

Model

Simulink

Simulation

STL

(b) Monitor

Simulation Trace

Specification

Figure 1: System diagnostics procedure overview – monitor-
ing and trace diagnostics.

Specification monitoring and trace diagnostics. In this step, we

evaluate a single test on the model. In other words, we first simulate

the model with the input trace, thus generating the output trace

(Figure 1 (a)) and use a monitoring procedure to check whether

these observable traces satisfy the STL specification (Figure 1 (b)).

If we detect a specification violation, we use a trace diagnostics

method [8] to localize all the segments in the observable traces that

are responsible for the detected fault (Figure 1 (c)). The outcome of

this procedure is the localization in time of the fault at the observ-

able interface of the model. Note that the resulting analysis does

not relate the fault to the model internal signals.

Model slicing. In this step, we employ model slicing [23] to map

the results from the monitoring and trace diagnostics to the internal

states and transitions in the model. The trace diagnostics procedure

identifies (among other things) a subset of interface variables that

are responsible for the detected fault. We use this information to

perform model slicing and find all the components in the model,

particularly in Stateflow charts, that may be involved in the specifi-

cation violation (see the light-gray-shaded chart in Figure 2). In the

next step, we map the intervals computed by the trace diagnostics

procedure to the trace that records the evolution of the chart’s states

and transitions over time (see the dark-gray band in the trace of the

highlighted Stateflow chart in Figure 2). We can now distinguish

between internal states and transitions that were active during the

correct and faulty test segments.

1

Slicing and Mapping

Model

Simulink

C

B
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Figure 2: System diagnostics procedure overview – model
slicing.

Spectrum-based Fault Localization. Weapply the above procedure

to all the available tests and collect the information in a tabular form

(see Figure 3). Each test is partitioned into a sequence of segments,

with each segment labeled with a pass or fail flag. We assign a

column in the table to each test segment. The states and transitions

appear as rows in the table. Whenever a state or a transition was

activated in a given test segment, we mark the corresponding cell

with a Boolean flag. Finally, we apply the spectrum-based fault

localization [1] procedure to find the states and the transitions that

are the most likely to cause the detected fault.

Test Tn
Pass

· · ·

t

Test T1

Fail

C

B
AA

B

C

0 0 t ′′t ′t ′′

State/Tran. T1[0, t ) T1[t, t ′) T1[t ′, t ′′) . . . Tn [0, t ′′)
A × × × ×

B × ×

C × ×

A → B × ×

B → A ×

B → C ×

C → A ×

C → B ×

Verdict Pass Fail Pass . . . Pass

Figure 3: System diagnostics procedure overview –
spectrum-based fault localization.

2 SYSTEM DIAGNOSTICS
In this section, we present our approach for localizing faults in

Simulink/Stateflow models. In Section 2.1, we define the syntax
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and semantics of Signal Temporal Logic (STL) and in Section 2.2

we discuss the monitoring procedure. Section 2.3 introduces the

trace diagnostics method. In Section 2.4 we describe the model

slicing procedure while in Section 2.5 we show how to apply the

spectrum-based fault localization in our framework.

2.1 Signal Temporal Logic
STL [17] extends the continuous-time Metric Temporal Logic [13]

with numerical predicates over real-valued variables. STL enables

reasoning about real-time properties at the interface between com-

ponents that exhibit both discrete and continuous dynamics.

We denote by X and P finite sets of real and propositional vari-
ables. We letw : T→ Rm × {0, 1}n be a multi-dimensional signal,
where T = [0,d) ⊆ R, m = |X | and n = |P |. Given a variable

v ∈ X ∪ P we denote bywv the projection ofw on its component v .
Given a value t ∈ R≥0 and interval I , we denote by t ⊕ I the
Minkowski sum {t + t ′ | t ′ ∈ I }.

The syntax of an STL formula φ is defined by the grammar

φ ::= p | x ∼ c | ¬φ | φ1 ∨ φ2 | ♢I φ | φ1 U φ2

where p ∈ P , x ∈ X , ∼ ∈ {<, ≤}, c ∈ Q, and I ⊆ R≥0 is an arbitrary

interval. We omit the subscript [0,∞) and write ♢φ,□φ instead of

♢[0,∞) φ,□[0,∞) φ respectively.

The semantics of STL is defined in terms of the satisfiability
relation (w, t) |= φ, indicating that signal w satisfies φ at time

t . Given a signal w over T, relation |= is defined for all t ∈ T
inductively as follows:

(w, t) |= p ↔ wp [t] = 1

(w, t) |= x ∼ c ↔ wx [t] ∼ c
(w, t) |= ¬φ ↔ (w, t) ̸|= φ
(w, t) |= φ1 ∨ φ2 ↔ (w, t) |= φ1 or (w, t) |= φ2

(w, t) |= ♢I φ ↔ ∃t ′ ∈ (t ⊕ I ) ∩ T : (w, t ′) |= φ
(w, t) |= φ1 U φ2 ↔ ∃t ′ ∈ (t ,+∞) ∩ T : (w, t ′) |= φ2 and

∀t ′′ ∈ (t , t ′) : (w, t ′′) |= φ1

We say that a signalw satisfies a STL formula φ, denoted byw |= φ,
iff (w, 0) |= φ.

Note that standard presentations of STL such as [17] often pro-

vide a timed until operatorUI that is primitive in the syntax, other

temporal operators deriving from it. According to an observation

made in multiple places, the current syntax is as general as the

standard one. This observation, known as the until rewrite rule,
enables us to recover several forms of timed until operators as the
following abbreviations:

φU[a,∞)ψ ≡ □(0,a) φ ∧ □(0,a](ψ ∨ (φ ∧ (φUψ )))

φU[a,b]ψ ≡ ♢[a,b]ψ ∧ φU[a,∞)ψ

Other forms of operator until, timed with open and semi-open

intervals, can be defined similarly, see [18].

2.2 Monitoring STL
Following the inductive semantics of STL, in order to know the

truth value of a given formula at every time point, it is sufficient to

know the truth value of its direct subformulas at every time point.

This is the basis of the monitoring algorithm of [17], which we

outline in this section.

The satisfaction signal of formula φ relative tow , denotedwφ ,
is the Boolean signal defined as follows:

wφ [t] =

{
1 if (w, t) |= φ
0 otherwise

This definition is consistent with the notion of projection when

φ ≡ p for some atomic proposition p ∈ P .
The monitoring algorithm runs offline and is recursive on the

formula structure. To compute the satisfaction signalwφ for a given

φ, we assume a partition of the temporal domain T = [0,d) into

[t1, t1], (t1, t2), . . . , [tn−1, tn−1], (tn−1, tn )

with t1 = 0, tn = d , such that the satisfaction signal of the subfor-

mulas of φ are constant over every (ti , ti+1) for i = 1, . . . ,n−1. The

value ofwφ is then computed in a manner specific to each operator,

as follows.

• Atomic formulas. The satisfaction signals of a Boolean vari-

able p is given directly by the trace. For atomic formulas of

the form x ∼ c , we first interpolate the times t1, . . . , tn at

which signal x crosses threshold c , and compute the Boolean

value over every interval of the resulting partition.

• Disjunction. The satisfaction signal of formula φ ∨ψ is con-

stant over every interval in the partition, and given by taking

the disjunction ofwφ andwψ over that interval, since

wφ∨ψ [t] = wφ [t] ∨wψ [t]

for all t ∈ T.
• Negation. Similarly the value ofw¬φ is constant over inter-

vals in the partition, and given by:

w¬φ [t] = ¬wφ [t]

for all t ∈ T.
• Timed eventually. We create a new partition of T of the form
[t ′

1
, t ′

1
], (t ′

1
, t ′

2
), . . . , [t ′m−1

, t ′m−1
], [t ′m−1

, t ′m ) from the set of

times {0,d} ∪ {ti − inf I , ti − sup I | 1 ≤ i ≤ n} ∩ (0,d).
The satisfaction signal of ♢I over every interval (t ′i , t

′
i+1

) is

constant, and given by:

w♢I φ [t] =
∨

t ′∈t ⊕I
wφ [t

′]

• Untimed until. The satisfaction signal of formula φUψ is

constant over every interval in the partition. Its value can be

determined from that ofwφ andwψ using the rulewφ [r ] =

wφ [r
+] over singular intervals [r , r ], and the rule

wφ Uψ [s
−] =


1 if wφ [s

−] = wψ [s
−] = 1

1 if wφ [s
−] = wψ [s] = 1

0 if wφ [s
−] = 0

wφ Uψ [s] otherwise

over open intervals (r , s) of the partition. Here wφ [r
+] =

wφ [s
−] denote the value ofwφ over the interval (r , s).

There are linear-time algorithms to compute such satisfaction

signals, the reader is referred to [18] for more details.
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2.3 Trace Diagnostics for STL
In this section, we introduce a novel trace diagnostics procedure

for STL. This procedure is based on the notion of epoch, defined
as a signal subset in terms of time and variables. Given a STL

specification φ and a tracew that violates φ, the trace diagnostics
procedure computes the epoch of w responsible for the detected

fault. We illustrate our procedure with Example 2.1.

0 1 2 3 4 5 6 7

p

x

φ1

φ2

φ3

φ

1

Figure 4: Monitoring and trace diagnostics for formula φ ≡

□(p → ♢[2,3](x ≥ 1)) with subformulas φ1 ≡ x ≥ 1, φ2 ≡

♢[2,3](x ≥ 1) and φ3 ≡ p → ♢[2,3](x ≥ 1).

Example 2.1. Consider the STL formula φ = □(p → ♢[2,3](x ≥ 1).

It requires that every time instant t at which p holds is followed by

another instant that is within the interval [t + 2, t + 3] and at which

x is greater or equal to 1. Figure 4 depicts a signal that violates

φ. Indeed, we can see that p holds during the interval [1, 2], but x
consistently stays below 1 throughout [3, 5]. We highlight in gray

two epochs [2, 3] and [3, 5] associated to p and x respectively that

together explain all the reasons for the violation of φ.

We introduce the localization operator Λ which is implicitly

parameterized by the tracew . It takes as argument a formula φ and

gives a mapping Λ(φ) : T→ 2
(P∪X )×T

associating the violation

(dually, the satisfaction) of φ at a given time t to an epoch where

the violation (satisfaction) occurs.

Definition 2.2 (Temporal Localization). Let φ be a formula, w
a signal, and t ∈ T. The epoch Λ(φ)[t] is defined inductively as

follows:

Λ(p)[t] = {(p, t)} Λ(x ∼ c)[t] = {(x , t)}

Λ(¬φ)[t] = Λ(φ)[t]

Λ(φ1 ∨ φ2)[t] =


Λ(φ1)[t] ∪ Λ(φ2)[t] ifwφ1

[t] = wφ2
[t]

Λ(φ1)[t] else ifwφ1∨φ2
[t] = wφ1

[t]
Λ(φ2)[t] else ifwφ1∨φ2

[t] = wφ2
[t]

Λ(♢I φ)[t] =
⋃

s ∈t ⊕I
wφ [s]=w♢I φ [t ]

Λ(φ)[s]

Λ(φ1 U φ2)[t] =
⋃

s ∈(t,+∞)∩T

Λ(φ1)[s] ∪ Λ(φ2)[s]

Note that the localization operator is self-dual relative to nega-

tion. Whenw ̸ |= φ the set Λ(φ)[0] can be characterized as being a

violation epoch of φ in signalw , based on the notion of sub-model
defined below.

Definition 2.3 (Sub-Model). We call partial signal a function v :

(X ∪P)×T→ {0, 1,⊥}, wherevx [t] = ⊥means thatv is undefined
over (x , t). A partial signalv is sub-signal ofw , denotedv ⊑ w , when

vx [t] = wx [t] for all (x , t) ∈ (X ∪ P) × T where v is defined. We

say that partial signal v is a (minimal) sub-model of some formula

φ whenw |= φ for all signalsw ⊒ v (and v is minimal for order ⊑).

The notion of trace diagnostic proposed by [8] consists of a

single sub-model of the negated formula under consideration. The

present notion of violation epoch consists of the subset of the signal

domain that appears in at least one such trace diagnostic.

Definition 2.4 (Epoch). Given a STL formula φ and a signal w
such thatw ̸ |= φ, we say that E ⊆ (X ∪P)×T is a (minimal) violation
epoch of φ relative to w when for all (x , t) ∈ (X ∪ P) × T it holds
that (x , t) ∈ E iff there exists a (minimal) sub-model v ⊑ w of ¬φ
such that vx [t] , ⊥.

Given a formula φ and signalw such thatw ̸ |= φ, the set Λ(φ)[0]
is a violation epoch of φ relative to signalw . Note that this provides

a small violation epoch, but not necessarily the minimal one. In

particular, the localization could be made more precise for operator

until along the lines of [8]. In general, the problem of finding the

minimal violation (equivalently, satisfaction) epoch is at least as

hard as satisfiability. This is because tautologies can be recognized

as admitting ∅ as a satisfaction epoch. Deciding Metric Temporal

Logic (MTL) [13] (and therefore STL) over bounded time domains

has a computational cost at least exponential in space [22]. On the

contrary, the violation epoch defined by Λ(φ)[0] can be computed

by the polynomial-time procedure that we now outline.

The idea is to apply operatorΛ(φ) symbolically over finite unions

of intervals, by lifting this operator to intervals according to

Λ(φ)[r , s] =
⋃

t ∈(r,s)

Λ(φ)[t]

assuming the satisfaction signal of φ is constant throughout [r , s].
Let us denote bywφ : T2 → {0, 1,⊥} the lifting ofwφ to intervals,

defined as

wφ [r , s] =


1 if (w, t) |= φ for all t ∈ (r , s)
0 if (w, t) ̸|= φ for all t ∈ (r , s)
⊥ otherwise

The lifted operator Λ(φ) is then characterized by inductive rules

similar to those of its scalar version, for instance

Λ(♢I φ)[r , s] =
⋃

t,u ∈P([r,s]⊕I )
wφ [r,s]=w♢I φ [t,u]

Λ(φ)[t ,u]

where P([r , s] ⊕ I ) is a set of time points in [r , s] ⊕ I such that

wφ [t ,u] , ⊥ for every consecutive t ,u. Starting from [0, 0] for a

main formula φ such thatw ̸ |= φ, we obtain a violation epoch for φ
inw that can be expressed using a finite union of intervals.

Example 2.5. We consider again the specification φ = □(p →

♢[2,3](x ≥ 1)) from Example 2.1. We compute the violation epoch
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Figure 5: Example of system model: (a) block diagram; (b)
signal-flow graph. Full nodes are input ports, shallow nodes
are output ports. Components c1, c2, c3 and c5 are atomic,
while component c4 is hierarchical. Treating c4 as atomic
would yield the spurious edge indicated with a dashed line.

of φ inw as follows (see light- and dark-gray intervals in Figure 4):

Λ(φ)[0, 0] = Λ(p → ♢[2,3](x ≥ 1))[1, 2]

= Λ(p)[1, 2] ∪ Λ(♢[2,3](x ≥ 1))[1, 2]

= Λ(p)[1, 2] ∪ Λ(x ≥ 1)[3, 5]

= Λ(p)[1, 2] ∪ Λ(x)[3, 5]
= {(p, [1, 2]), (x , [3, 5])}

2.4 Model Slicing
We now present a procedure that, given a faulty signal x , finds in a

Simulink modelM the set of source signals that are upstream of x .
We call this set the cone of influence of x , and denote it by coneM (x).
In a signal-flow graph, where signals are nodes and components

are edge labels, this amounts to finding the set of back-reachable

nodes. The internal representation of Simulink model is more hi-

erarchical in nature, and requires special handling. Ignoring this

hierarchical information would lead to over-approximations, as il-

lustrated in Figure 5. In that example, the correct computation gives

us coneM (x) = {u} instead of {u,v}. One simple way to treat the

hierarchy would be to flatten the model, i.e. “unbox” components

that are contained in others, prior to applying the reachability pro-

cedure. This requires to explore the whole model a priori; instead

we unbox components on the fly. Before further describing the

procedure, we take some basic definitions.

A Simulink model is given in the form of a hierarchical block

diagram with the following features. A diagram contains three

types of elements: components, ports, and signals. These elements

have the following relations inM :

• A component c is associatedwith a set of input ports, denoted
in(c), and a set of output ports, denoted out(c), such that

in(c) ∩ out(c) = ∅.

• A port p is associated with a unique component denoted

block(p), such that p ∈ in(block(p)) ∪ out(block(p)).
• A signal x connects with a source port, denoted src(x), with
a set of destination ports, denoted dest(x). For every port

p there is at most one signal x such that p = src(x), and at

most one signal y such that p ∈ dest(y).

Note that there are other types of ports, such as enable ports, which
we ignore. We consider two types of Simulink components: atomic,

and hierarchical. An atomic component cannot have its input ports

directly connected to input ports of another component; similarly

for output ports. A hierarchical component c can have its input

ports directly connected to input ports of another component c ′,
and similarly for output ports. Such a component c ′ which is called

a subsystem of c .
We treat atomic components by assuming that any signal con-

nected to one of its input port can influence any signal connected

to one of its output port. From a signal-flow graph perspective, an

atomic component connects each of its input signals to each of its

output signals. Given a set of signals X we define the set of driving

ports drvM (X ) as follows:

drvM (X ) = in(block(src(X )))

For any set of ports Q , let us write dest−1(Q) = {x | dest(x) ∈ Q}.

The set of signals upstream of a given set of signals X is denoted

pre(X ) and defined by letting preM (X ) = dest−1(drvM (X )). The

cone of influence of some signal variable x is the reflexive-transitive

closure of preM , that is

coneM (x) = pre ∗
M ({x})

Computing coneM (x) for a given x is done using a standard fix

point computation over preM . We build sets of signals Xi and Yi ,
i = 1, . . . ,n such thatX0 = {x},Y0 = ∅ andXi+1 = preM (Xi )\Yi+1,

Yi+1 = Yi ∪ Xi until Xn = ∅. Then, coneM (x) = Yn .

2.5 Spectrum-based Fault Localization
We now describe how we apply a spectrum-based fault localization

procedure to identify the internal states and transitions in the model

that are the most likely to be responsible for the fault. We use the

Tarantula indicator [12], a well-known technique for statistical fault

localization from the software engineering field. This method as-

sumes a number of test cases that are labeled with pass/fail verdicts,

the software components that were executed during each test and

the source code of the software. Tarantula correlates the activity

of software entities (components, methods, statements, branches,

etc.) to the pass and fail verdicts and accordingly computes a score
for each entity that indicates its likelihood to be responsible for the

detected fault. Intuitively, components that are more often activated

in failed tests are better “culprit” candidates than components that

are more often executed in the passed tests.

We present the Tarantula method in a more formal manner

as follows. Let T be a set of tests and T ∈ T a single test. Let

oracle : T → {pass, fail} be the oracle that maps each test to a pass

or fail verdict. Let E be the set of entities and active : E × T → B
a function that maps an entity e ∈ E and a test T ∈ T to true iff

e is active in T . Let Tp = {T | T ∈ T and oracle(T ) = pass} and
Tf = T\Tp denote the sets of passed and failed tests, respectively.

Let T e = {T | T ∈ T and activity(T , e)} denote the set of tests

with active entity e . We denote by T e
p = Tp ∩ T e

the passed tests

with active entity e and T e
f = Tf ∩ T e

the failed tests with active

entity e . Finally, we define passed(e) = |T e
p |, failed(e) = |T e

f |,

total_passed = |Tp | and total_failed = |Tf | as the cardinalities of

the respective sets. We then define the score function score(e) that
maps each entity to a number as follows:

score(e) =

failed(e)
total_failed

passed(e)
total_passed +

failed(e)
total_failed
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We adapt the Tarantula method to our CPS context and dynamic

traces. Let us point out that we will use the model slicing technique

from the previous section to identify all internal state signals that

influence the observable variables declared in the specification. A

test hence consists of a simulation trace over time that contains both

the observations of the variables from the specification and the state

variables given by the slicing. We define our entities as states and

transitions observed in the test. The sets Tp and Tf of passed and

failed tests are generated in two stages. In the first step, we use the

monitoring results to make the first test partition according to the

satisfaction/violation verdict of the monitor. All the tests that satisfy

the specification are put in the set Tp of passed tests. However, we

use the trace diagnostics procedure to further partition the tests

that violate the specification into multiple segments. Each segment

is marked according to its involvement in the falsification of the

specification. The segments in time that have no relation with the

detected fault are considered to be passed tests and are added to

Tp . The test segments that are responsible to the falsification of the

specification, and only those, are added to the set of failed tests

Tf . Finally, for each entity (state or segment), we check its activity

in a test (or test segment) by traversing the simulation trace and

observing whether the entity is present or absent in the test.

3 EVALUATION
We developed a prototype implementation of the procedures de-

scribed in Section 2. The test generation, test simulation, model

slicing and spectrum-based fault localization were developed as

MATLAB functions. We used the AMT tool [21] for offline moni-

toring of STL properties and implemented epoch trace diagnostics

presented in Section 2.3 on top of it.

3.1 Automatic Transmission Controller
Model. We use the automatic transmission controller model pro-

posed in [11], and depicted in Figure 6. It is a model of an automatic

transmission controller that exhibits both continuous and discrete

behavior. The system has two inputs – the throttle ut and the break
ub . The system has two continuous-time state variables – the speed

of the engine ω (rpm), the speed of the vehicle v (mph) and the

active gearдi . The system is initialized with zero vehicle and engine

speed. It follows that the output trajectories depend only on the

input signals ut and ub , which can take any value between 0 and

100 at any point in time.

Figure 6: Automatic transmission model.

Figure 7: Automatic transmission model – Stateflow chart.

Specification. A requirement of this model is that the vehicle

speed v and engine angular speed ω should not exceed maximal

values of v̄ = 120mph and ω̄ = 4500 rpm, respectively.We formalize

this requirements as two STL specifications:

φ1 ≡ □(v < v̄)

φ2 ≡ □(ω < ω̄)

Evaluation Setting. We first generate 100 test cases in which

the break signal ub is set to 0 and the throttle signal ut is a step
function. In each test case, throttle value is initialized to u0

t and

after some time τ switches to some target value uτt > u0

t . We obtain

different test inputs by varying the values of u0

t , u
τ
t and τ . We then

apply model slicing technique over the signalsv and ω and identify

the ShiftLogic Stateflow chart and gear as the internal state signal
that needs to be observed. We simulate all the test cases. Every

simulation consists of 3000 time samples of the variables ut , ub , v ,
ω and gear.

We next monitor the simulation traces against the specifications

φ1 and φ2 and apply the epoch diagnostics procedure to the tests

that violate either of the two properties. The result of the diagnostics

procedure for every test is a list of tuples of the form (var, I ), where
var is the variable name and I is the interval that is identified as

contributing to the property violation. We use this information to

further partition the traces that violate the formula into the faulty

and non-faulty segments. For every test and every partition, we

mark all the active events in a table, and apply the Tarantula formula

to compute the fault localization score. We call this diagnostics

procedure mdss-debug (based on four steps:monitor, diagnose, slice,
score).

In order to assess our technique, we apply the same procedure,

but without doing the trace diagnostics andwithout partitioning the

faulty traces. We call this diagnostics procedure ms-debug (based
on only two steps: monitor, score).

Results. We first analyze the system diagnostics results of the

procedure mdss-debug for the specification φ1. The outcome of

mdss-debug for φ1 is very decisive – the only proposed “culprit”

event is the state gear = 4. Consider Figure 8, where we collect all

the tests that violate φ1 and plot their speed and gear signals. In

addition we show a gray-shaded band that is the convex-hull of all

the violation windows reported by the trace diagnostics tool. It is
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Table 1: Automatic transmission controller – scores.

φ1 φ2

Event mdss-debug ms-debug mdss-debug ms-debug

1 0 0.50 0.16 0.50

2 0 0.50 0.39 0.50

3 0 0.50 0.48 0.50

4 0.51 0.51 0.32 0.51

1 → 2 0 0.50 0.16 0.50

2 → 3 0 0.50 0.33 0.50

3 → 4 0 0.51 0.34 0.51

3 → 2 0 0.68 0 0.83

2 → 1 0 1 0 1

clear from the figure that in all cases the fault happens when the

controller is in the gear 4, hence the outcome of mdss-debug turns

out to be precise and correct.

Figure 8: Simulation traces that violate φ1.

We now analyze the system diagnostics results of the procedure

mdss-debug for the specification φ2. In this case, the results are

less decisive. We can see that the gears 2, 3 and 4 are all correlated

to the detected fault, as well as the transitions 2 → 3 and 3 → 4.

If we further combine these results with the analysis of the epoch

diagnostics (we depict one trace that violates φ2 in Figure 9), we

see that the violations occur only after the controller stays for

sufficiently long time in a gear, and that the transition to the next

gear marks the end of the violation. In this example, the computed

score is not sufficient on its own to provide a good explanation of

the specification violation, but provides a valuable indication that

combined with the epoch diagnostics information allows to localize

and explain the fault.

We finally note that the procedure ms-debug gives significantly

different results from mdss-debug. In particular, ms-debug marks

the event 2 → 1 as the absolute candidate to explain both specifi-

cation violations with score 1, while mdss-debug marks this same

event with score 0. By looking closer at the simulation traces, we

find out that the transition from gear 2 to gear 1 happens in a single

test case T , depicted in Figure 10. Procedure ms-debug only sees

that T fails, and selects 2 → 1 as one of the potential explanation

candidates. Since this event does not appear in any of the passed

tests, it is selected as the best possible explanation result. On the

Figure 9: Simulation trace violatingφ2 and its epoch diagnos-
tics.

other hand, the epoch diagnostics procedure used in mdss-debug is
able to distinguish that the 2 → 1 event (marked by the red vertical

line in Figure 10) is not related to the actual faults that trigger the vi-

olation of φ1 and φ2 (marked by the gray bands in Figure 10). Hence,

it rightfully excludes this event from the subsequent analysis and

gives it the score 0.

Figure 10: Test featuring the gear transition event 2 → 1.

Computation Cost. We summarize the computational overhead

of our procedure in Table 2. This global overhead is measured to be

2.3 seconds per test, which is an acceptable computational cost. We

first observe that the test simulation is relatively efficient, which is

explained by the high-level nature of the model. We also see that

the monitoring and diagnostics dominate the computation costs.

This is mainly due to an invariant overhead of calling an external

tool, in addition to processing simulation data.

3.2 Elevator Control System
Model. We consider the Simulink/Stateflow model [20] (see Fig-

ure 11) of aircraft’s elevators control system. These flight control

surfaces are usually attached on the horizontal tails of an aircraft

and they are responsible for the control the aircraft’s pitch. To as-

sure the safety of the aircraft the system includes several redundant

parts in the system as illustrated in Figure 11: (1) four independent

hydraulic actuators (two for each elevator); (2) three hydraulic sys-

tems for driving the actuators; (3) two Primary Flight Control Units

(PFCUs) and (4) two control modules for each actuator – full range
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Table 2: Computation cost.

Procedure Time (ms)

Test generation 23

Model instrumentation 6

Test simulation 250

Monitoring 1400

Diagnostics 550

Slicing 1

Spectrum-based FL 100

Total 2330

Figure 11: Elevator Control System.

control law and limited range control law. The system takes as an

input pilot commands ulp and urp that provide the target positions

to the left and right surface actuators. These inputs are modeled

as square waves. The control system uses the hydraulic actuators

to bring the control surfaces to the target position. Each of the

actuators has an associated state machine identical to the one in

Figure 12. For convenience we assign a numerical identifier to each

state that we use in the remainder of the section: 1 – passive, 2 –
active, 3 – standby, 4 – off and 5 – isolated. The outputs of the
systems are leftml

and and rightmr
measured positions.

Specification. This model requires that the control surfaces prop-

erly reach the target positions within specified time. In essence, the

absolute difference between the pilot command for the left and the

right control surfaces and the corresponding measured positions

must always be bounded by some dmax constant, except when the

pilot command changes in which case a delay of at most tmax is

allowed for the actual position to reach the target one. We formalize

this requirement as two STL specifications:

φ3 ≡ □♢[0,tmax](|u
l
p −ml | ≤ dmax)

φ4 ≡ □♢[0,tmax](|u
r
p −mr | ≤ dmax)

where tmax = 1 and dmax = 0.3.

Given that the properties φ3 and φ4 are symmetric, we focus in

the remainder of the paper only on the former. In Figure 13, we

illustrate the correct behavior of the left wing control surface. We

Figure 12: Elevator Control System – Stateflow chart associ-
ated to left outer actuator.

can see that the target behavior is followed within a certain amount

of time by the actually measured behavior. We can also observe

the behavior of the left wing actuators - the left outer actuator is

always in the active state, while the left inner actuator remains in

the standby state, implementing a safety redundancy.

Figure 13: Elevator Control System – ideal behavior.

Evaluation Setting. The elevator control system model comes

with the possibility of fault injection. There are two types of faults

that can be injected during themodel simulation: (1) in the hydraulic

system circuits; and (2) in the individual actuators. We create 4 tests

with the following properties:

Test 1 no fault injection

Test 2 faults in left and right outer actuators

Test 3 faults in left inner and outer actuators

Test 4 faults in left hydraulic system circuits 1 and 2

Results. The application of the monitoring procedure shows that

tests 1 and 2 satisfy, while tests 3 and 4 violate the specification φ3.

Table 3 summarizes the fault localization results. The application of

procedure mdss-debug clearly indicates that the fault is associated

to the fact that both the left inner and the left outer state machines

are in the isolated state. The procedure ms-debug gives a less de-

cisive verdict, giving an equal responsibility likelihood to 2 states

and 3 transitions.

We now analyze further these results. Test 1 passes because we

do not inject any fault. In Test 2, we inject 2 faults, one in the left
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Table 3: Elevator control system – scores.

Event mdss-debug ms-debug

(1, 1) 0 0.50

(2, 3) 0 0.5

(4, 2) 0 1

(5, 2) 0 0.5

(5, 5) 0.67 1

(1, 1) → (2, 3) 0 0.5

(2, 3) → (4, 2) 0 1

(2, 3) → (5, 2) 0 0.5

(4, 2) → (5, 5) 0 1

(5, 2) → (5, 5) 0 1

outer and the other in the right outer actuator. The redundancy

ensures the correct operation of the system. In Test 3, we inject

both faults in the left actuators, thus inhibiting redundancy. Finally,

the injection of two faults in the hydraulic system circuits 1 and 2

also affects both left actuators resulting in the failure. The effect of

Tests 3 and 4 is that both the left inner and outer state machines go

to the isolated states which is correctly identified by our approach.

The diagnostics results for Test 3 are illustrated in Figure 14.

Figure 14: Elevator Control System – incorrect behavior.

The ms-debug procedure only takes into account the pass/fail

test verdicts. It is hence not able to properly distinguish between

the events that are related to the actual detected fault.

4 RELATEDWORK
Since the late 1970s, in the software engineering community there

has been a great effort to provide (semi-)automatic techniques as-

sisting the developer to localize and to explain program bugs (we

refer the reader to the very comprehensive survey of [26]). Among

these techniques, the spectrum-based fault-localization (SFL) [1] is

a lightweight and well-established statistical technique to measure

the code coverage associated with the failed and successful tests.

In particular, SFL provides a ranking of the program components

that are most likely responsible for the observed fault.

Only very recently, this approach has been applied to also local-

ize faults in Simulink/Stateflow CPS models [14–16], exhibiting a

comparable accuracy with the same method applied to software

systems [16]. However, the main limitation of this heuristic remains

its unpredictability. In fact, it may happen that when applied to a

certain test suite, this method assigns the same level of suspicious-

ness to several components. In such case, one way to improve the

precision is to refine the ranking of the suspicious components by

automatically generating additional suitable test cases [3, 4, 14, 24].

In this paper, we pursue a new orthogonal and complementary

approach to improve fault-localization without the need to generate

additional test cases. The classical SFL is agnostic to the nature of

the oracle and only requires to know whether the system passes or

not a specific test case. SFL does not exploit any additional infor-

mation about why and when the instrumented system produces an

output that is not conformed with respect to a requirement. Here,

we assume that our oracle is a monitor generated from an STL

requirement. This choice enables us to leverage the trace diagnostic

method proposed in [8] and to obtain more information about the

failed tests improving the fault-localization.

Other related and complementary approaches can be found in

recent papers [6, 10]. The work in [6] investigates the problem of

identifying the most important segments in the input of a coun-

terexample that falsifies an STL requirement. Although this method

does not provide any information about internal fault-localization,

it can be exploited to generate more test cases producing violations

and indeed improving even further the precision of our approach.

In [10], the authors address the problem of the controllers synthe-

sis in the model predictive control framework, providing feedback

on the reasons of a controller unrealizability whenever the STL

specification is infeasible to realize. The particular chosen frame-

work enables to encode the controller synthesis problem as a Mixed

Integer Linear Program (MILP). On the contrary, the approach pre-

sented here is general and can be applied not only to MPC synthesis

problems, but also to other Simulink/Stateflow models.

We are also aware that the problem of fault diagnosis for dy-

namical systems has been extensively investigated from a different

perspective within the control-theory community. In particular,

two main families of model-based techniques have emerged: a fault

detection system based on output observers [9] and an on-line pa-

rameter estimation approach [5] using state-based observers. Our

approach is more related to the first one since wemonitor the output

of the system. Observer-based fault detection systems generally use

a class of statistical models called Kalman filters to online estimate

the residual, a real value representing the difference between the

output of the system and the estimated one. In this case modeling

errors that are generally difficult to avoid can create unexpected

troubles. In our approach (that is offline and simulation-based) we

use instead an STL requirement that specifies in a rigorous way the

possible set of allowed trajectories of the system, and we exploit

this logical framework to refine our search for the cause of a fault.

5 DISCUSSION AND FUTUREWORK
We presented a novel procedure for debugging Simulink/Stateflow

models that is guided by STL specifications. The proposed approach

uses logic-based reasoning and model slicing to refine spatial and

temporal information about detected test violations. This data is

then processed by spectrum-based fault localization algorithm to

identify the most likely reason for the violation. We demonstrated
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the effectiveness of our method on two application examples, from

the automotive and avionics domain.

The evaluation of our approach shows promising results. The

combination of trace diagnostics with spectrum-based fault local-

ization seems to provide an effective debugging aid to the engineer.

The former method enables refining failing tests into smaller, more

informative segments that guides the statistical search of the culprit.

Nevertheless, application examples reveal possible improvements,

and open several directions to pursue as future work.

We first recall that in this paper we identify faults with respect to

discrete locations and transitions of the Simulink/Stateflow model.

While we are confident that in hybrid systems design faults are

typically related to particular locations and mode switches, con-

sidering in addition the continuous dynamics can certainly help in

identifying the reasons for specification violations.

In our analysis, only basic events (states and transitions) were
considered as candidates to explain faults. We have seen that such

analysis alone may not be sufficient. Some applications may require

richer structures that take into account duration of being in a state,

sequences of events, correlation between the states and some con-

tinuous parameters etc. to explain certain faults. In order to tackle

this problem, we see a potential need to combine logic-based with

machine learning reasoning.

We use staticmodel slicing to identify Simulink/Stateflow entities

that can influence the fault. While this static approach is able to

discard irrelevant model components and narrow down the search

for the right explanation, we also plan to studymore dynamic slicing

techniques. In particular, dynamic slicing could help by taking into

account potential propagation effects in the model and thus further

refine our analysis.
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