
Interface-Aware Signal Temporal Logic
Thomas Ferrère

IST Austria

thomas.ferrere@ist.ac.at

Dejan Nickovic

AIT Austrian Institute of Technology

Dejan.Nickovic@ait.ac.at

Alexandre Donzé

Decyphir, France

alex@decyphir.com

Hisahiro Ito

Toyota Motor Corporation

hisahiro_ito@mail.toyota.co.jp

James Kapinski

Toyota Research Institute of

North America

jim.kapinski@toyota.com

ABSTRACT
Safety and security are major concerns in the development of Cyber-

Physical Systems (CPS). Signal temporal logic (STL) was proposed

as a language to specify and monitor the correctness of CPS relative

to formalized requirements. Incorporating STL into a development

process enables designers to automatically monitor and diagnose

traces, compute robustness estimates based on requirements, and

perform requirement falsification, leading to productivity gains in

verification and validation activities; however, in its current form

STL is agnostic to the input/output classification of signals, and

this negatively impacts the relevance of the analysis results.

In this paper we propose to make the interface explicit in the

STL language by introducing input/output signal declarations. We

then define new measures of input vacuity and output robustness

that better reflect the nature of the system and the specification in-

tent. The resulting framework, which we call interface-aware signal

temporal logic (IA-STL), aids verification and validation activities.

We demonstrate the benefits of IA-STL on several CPS analysis

activities: (1) robustness-driven sensitivity analysis, (2) falsification

and (3) fault localization. We describe an implementation of our en-

hancement to STL and associated notions of robustness and vacuity

in a prototype extension of Breach, a MATLAB
®
/Simulink

®
toolbox

for CPS verification and validation. We explore these methodologi-

cal improvements and evaluate our results on two examples from

the automotive domain: a benchmark powertrain control system

and a hydrogen fuel cell system.

CCS CONCEPTS
•Computingmethodologies→ Simulation evaluation; •Theory
of computation → Modal and temporal logics;

1 INTRODUCTION
Cyber-physical systems (CPS) combine computational and physical

components that interact with their environment via sensors and

actuators. These systems are complex and often used in mission-

critical applications. Verification and validation (V&V) for such

systems is an essential activity that ensures high standards of safety

and performance are met and sufficient correctness evidence is

gathered for regulatory bodies.

Runtime monitoring is a formal, yet pragmatic method for per-

forming analysis of individual system behaviors. When used at

design-time, runtime monitoring makes the V&V process more

systematic and rigorous, while remaining scalable (see [1] for an

overview). Signal Temporal Logic (STL) [2] is a specification for-

malism for expressing real-time temporal safety and performance

properties of CPS. In its standard, qualitative interpretation, STL

acts as a binary classifier that partitions behaviors according to

their satisfaction or violation of a specification.

Fainekos and Pappas proposed in [3, 4] to equip temporal logic

with a quantitative interpretation, whose adaptation to STL was

studied in [5]. This alternative semantics replaces the binary satis-

faction relation with a real-valued robustness degree indicating how
far an observed signal is from satisfying or violating the specifi-

cation. Monitoring STL with quantitative semantics can be done

efficiently [6] and is implemented in the Breach [7] and S-TaLiRo [8]

tools. These tools use robustness computations to perform falsifi-
cation [9, 10] and specification mining [11]. Falsification is a search-

based testingmethod that explores a system parameter-space to find

behaviors that violate a given specification. Specification mining

can be either seen as a process of learning full specifications [12, 13]

or as identifying parameters in specification templates [14–17].

Both approaches use robustness computations to guide the search

for tightest parameters or for most informative formulas.

One shortcoming of STL is that the standard procedure for mea-

suring the robustness of an observed behavior with respect to an

STL specification sometimes gives unexpected and nonintuitive

results. We illustrate this observation with the following scenario. A

verification engineer is evaluating the system-under-test S depicted

in Figure 1-(top). The system S receives requests and is expected

to respond to each request with a grant within 2 time units. We

say that there is a request (grant), whenever the signal req (gnt)
is above the threshold 4. We formalize this requirement with the

following STL specification: φ ≡ □((req ≥ 4) → ♢[0,2](gnt ≥ 4)).

The verification engineer designs a test input req consisting of a

train of requests, executes it on S and observes the system output

gnt. The signals req and gnt in the resulting trace w are depicted

in Figure 1-(bottom). These two signals witness the violation of

φ – inw the requests from req are never granted because gnt fails
to reach the expected threshold 4. In particular, we can observe

that gnt is 3 units away from reaching the expected threshold. As a

consequence, we expect the robustness degree, denoted by ρ(φ,w),
to be equal to −3, measuring how bad the system reaction is with

respect to the specification. Instead, the standard robustness of

[4, 5] implemented in S-TaLiRo and Breach gives us ρ(φ,w) = −1.
The reason for this counter-intuitive result is that, in this ex-

ample, the value of ρ(φ,w) relates to req; that is, the robustness
value −1 indicates that it suffices to reduce the amplitude of the

pulses of req inw by 1 unit to move this signal below the threshold

MonitorEnvironment
(Test) System

0

6 7

3

7654321

50 1 2 3 4

1

req

1

2

3

4

3

gnt

4

gnt

req

0

1

2

0

S

Figure 1: Request-grant property: (top) system S and its test
environment, (bottom) signals req and gnt.

4, thus removing all requests fromw . Over signals that do not issue

any request, formula φ is vacuously satisfied. Thus the robustness

value in this case does not relate to how robust the system is when

measured at its output, but rather how close the input is to being

vacuous (how near it is to not exercising the system at all).

In this work, we propose an extension of STL that classifies sig-

nals as inputs and outputs. This simple, yet fundamental addition

to the temporal logic allows us to specify the system-under-test as

an input/output relation and not a set of correct execution traces.

Separating responsibilities between the system-under-test and its

environment is a key aspect of hierarchical system design [18], and

adding interface information to the specification is a significant

enhancement, from a methodological point of view. In particular,

the definition of the interface in a specification allows us to sepa-

rately reason about the quality of inputs (does the input exercise the

system in any meaningful way?) and the quality of outputs (how

good is the reaction of the system to the given input?). We develop

new notions of robustness and vacuity that capture the distance to

satisfaction and violation measured at the input and output of the

system separately, which we argue better capture the robustness of

a system. We demonstrate the benefits of interface-aware specifica-
tions and associated notions of robustness and vacuity on several

CPS analysis activities:

(1) Robustness-driven sensitivity analysis of CPS;

(2) Falsification-based testing;

(3) Robustness-guided fault localization and explanation.

For this last point we enhance the trace diagnostics algorithm of

[19] by adding some information relative to the robustness analysis,

and not just the pass/fail status of the property. This provides better

debugging information and makes the robustness analysis process

more transparent. We evaluate the results on one academic and

one industrial case study, where both examples come from the

automotive domain.

2 RELATEDWORK
We consider requirements that qualify a system in terms of its

input/output behavior, inspired by the ST-Lib library of specifi-

cations [20]. ST-Lib supports the formal specification of behavior

requirements for automotive control systems. This library includes

many of the types of performance and functional behaviors of in-

terest to engineers developing embedded control applications. In

particular, the library features STL formulas that capture overshoot,

settling times, rise times, and steady-state behaviors, and most in-

volve the interplay between input signals and expected response

(output) behaviors.

The distinction between environment assumptions and system

guarantees can help improve the performance of falsification in the

presence of potentially vacuous input signals. This problem was

studied in [21] for STL formulas of the form □(α → β) with the an-

tecedent α ranging over inputs and the consequent β ranging over

output signals. That work employs a Gaussian process regression

to estimate the region of the input space in which α holds with

high probability. A similar problem was addressed by Dokhanchi et

al. [22]. That work proposes to improve the falsification procedure

by first searching for a prefix input in which the antecedent α is

satisfied and then searching for a suffix input such that over the

corresponding output the consequent β is falsified. In both works

the specific structure of the formula is used to identify parts of the

specification related to input versus output. Our method provides

a more versatile solution: by enriching the specification language

with explicit signature declarations we are able to handle any spec-

ification that relates inputs to outputs, without any restriction on

the form of the specification.

The more general problem of vacuity as an assessment of the

quality of specifications has been studied in the context of discrete-

time temporal logics. Vacuity detection in temporal logic was first

studied in [23] for the ACTL fragment of CTL (computation tree

logic). The vacuity properties of CTL
∗
temporal specifications were

further studied in the context of model checking in [24]. The idea

of vacuity from model checking is extended to the testing setting

in [25] as a notion that complements test coverage. We adopt a more

practical approach, in which we define vacuity of the specification

only with respect to a concrete input signal.

Explaining a specification violation is another important aspect

of STL testing methodologies. Fault explanation in terms of tempo-
ral implicants, small segments of the observed behavior that witness

the violation, was proposed in [26]. That method uses standard STL

with qualitative semantics, and it neither captures input/output

relationships between signals nor identifies the explanation of the

worst case behavior. By contrast, our method uses both the in-

put/output signature of the specification and its robustness degree

to identify the precise subset of signals and time points that are

responsible for the observed robustness value.

2

3 INTERFACE-AWARE STL
We first provide an introduction to signal temporal logic (STL), and
then augment it with input/output declarations to arrive at an

enhanced version of the language, which we call interface-aware

STL (IA-STL). We then show how the interface information can be

used to make the STL robustness measure more meaningful. For

this, we first develop a notion of relative robustness that restricts
temporal logic robustness to a subset of signals. We use this general

notion of robustness to define two new measures in the context of

IA-STL, which we call output robustness and input vacuity. Finally
we study the properties of the new proposed notions and discuss

their intended use.

Syntax and Semantics. We start with some background definitions.

Let S = {s1, . . . , sn } be a set of signal variables. We define the time

domain T to be of the form [0,d] ⊂ R. A signal or trace w is a

function T → Rn , which we also see as a vector of real-valued

signals wi : T → R associated to variables si for i = 1, . . . ,n. In
the following we assume that everywi is piecewise monotone and

bounded.
1
Given two signals u : T → Rl and v : T → Rm , we

define their parallel composition u∥v : T→ Rl+m in the expected

way. Given a signal w : T → Rn and variables R ⊆ S with R =
{si1 , . . . , sim } for some 1 ≤ i1 < . . . < im ≤ n, we define the

projection ofw onto R as follows:wR = wi1 ∥ . . . ∥wim .

Let Θ be a set of terms of the form f (R) where R ⊆ S are subsets

of variables and f : R |R | → R are interpreted functions. The syntax

of STL is given by the grammar

φ ::= ⊤ | f (R) > 0 | ¬φ | φ1 ∨ φ2 | φ1UI φ2 ,

where f (R) are terms in Θ and I are real intervals with bounds in

Q≥0 ∪ {∞}. As customary we use the shorthands ♢I φ ≡ ⊤UI φ
for eventually and □I φ ≡ ¬ ♢I ¬φ for always. The timing interval I
may be omitted when I = [0,∞) or I = (0,∞).

The semantics of STL is captured by the relation |= between a

time t , signalw , and formula φ, given by induction as follows:

(w, t) |= ⊤

(w, t) |= f (R) > 0 iff f (wR [t]) > 0

(w, t) |= ¬φ iff (w, t) |, φ

(w, t) |= φ1 ∨ φ2 iff (w, t) |= φ1 or (w, t) |= φ2

(w, t) |= φ1UI φ2 iff ∃t ′ ∈ t ⊕ I , (w, t ′) |= φ2 and
∀t ′′ ∈ (t , t ′), (w, t ′′) |= φ1 .

Here we use the symbol ⊕ to denote the Minkowski sum between

t and I , defined as follows: t ⊕ I = {t + a | a ∈ I }. We writew |= φ
when (w, 0) |= φ.

We now define interface-aware signal temporal logic (IA-STL),
by augmenting STL with input/output declarations. Formally, an

IA-STL specification is a tuple (X ,Y ,φ) such that X ∩Y = ∅, where

• φ is an STL formula over variables in S ;
• X ⊆ S is the set of the input variables;
• Y ⊆ S is the set of the output variables.

We remark that while desirable, we do not require the set of signals

to be partitioned into input and outputs, in that we allow for signals

in S \(X ∪Y) that are neither input nor output. This may be relevant

1
In practice, we assume piecewise linear or piecewise constant signals.

for internal state signals whose role is not clearly defined. This also

ensures backward compatibility and in general makes IA-STL a

conservative extension of STL.

Relative Robustness. We introduce a notion of robustness special-

ized according to two subsets of variables X ,Y ⊆ S such that

X ∩Y = ∅. Let φ be an STL formula andw a signal trace. We define

the X -robustness relative to Y , denoted ρYX (φ,w, t) by induction as

follows:

ρYX (⊤,w, t) = +∞

ρYX (f (R) > 0,w, t) =


0 if R ⊈ X ∪ Y

f (wR [t]) else if R ⊈ Y

sign(f (wR [t])) · ∞ otherwise

ρYX (¬φ,w, t) = −ρ
Y
X (φ,w, t)

ρYX (φ1 ∨ φ2,w, t) = max

{
ρYX (φ1,w, t), ρ

Y
X (φ2,w, t)

}
ρYX (φ1UI φ2,w, t) = sup

t ′∈t ⊕I
min

{
ρYX (φ2,w, t

′),

inft ′′∈(t,t ′) ρ
Y
X (φ1,w, t

′′)

}
,

where for all a ∈ R, sign(a) · ∞ = +∞ if a > 0, −∞ otherwise.

We note that the standard STL robustness ρ as defined in [3, 5]

can be recovered by letting ρ(φ,w, t) = ρ ∅S (φ,w, t). The notion of

robustness that we define instead measures the robustness only on

the subset of variables X , relative to some variables Y . Variables in
X are measured, and their robustness is given by the terms they

appear in; variables in Y are considered fixed and their robustness

is taken to be infinite; variables neither inX nor inY are considered

to take arbitrary values, and their robustness is zero.

Output Robustness and Input Vacuity. We now specialize the notion

of relative robustness to the context of input and output signals.

Let (X ,Y ,φ) be an IA-STL specification.

• We call output robustness, denoted µ, the Y -robustness rela-
tive to S\Y . By definition µ(φ,w, t) ≡ ρ

S\Y
Y (φ,w, t).

• We call input vacuity, denoted ν , the X -robustness relative
to ∅. By definition ν (φ,w, t) ≡ ρ ∅X (φ,w, t).

Table 1: Possible combinations of output robustness and in-
put vacuity values, where k ∈ R≥0, and their meaning.

µ(φ,w) ν (φ,w) Interpretation

+∞ +k vacuously true

+k 0 nonvacuously true

−k 0 nonvacuously false

−∞ −k vacuously false

The output robustness represents the robustness of the specifi-

cation relative to the trace, measured at the output. When positive

(negative), it indicates by how much the output can be changed

without falsifying (satisfying) the formula for the given input.When

infinity (negative infinity), the output robustness indicates that φ
is vacuously satisfied (falsified) by the given input.

The input vacuity measure represents the level of vacuity of φ
with respect to the given input. When positive (negative) it indi-

cates by how much the input can be changed without falsifying

3

(satisfying) the formula, regardless of the output. When equal to 0,

the input vacuity indicates that the formula is non-vacuously true

or false, based on tracew .

Table 1 summarizes the meaning of possible combinations of

input vacuity and output robustness.
2

We verify that, by construction, the vacuity ofφ relative tow only

depends on input variables X . Consider an IA-STL specification

(X ,Y ,φ) and let us assume without loss of generality that X is of

the form {s1, . . . , sm }.

Proposition 3.1. For any t ∈ T, u : T → Rm and v,v ′ : T →
Rn−m we have ν (φ,u∥v, t) = ν (φ,u∥v ′, t).

Thus in the following for u = wX , we freely write ν (φ,u, t) in
place of ν (φ,w, t).

We motivate the definitions of input vacuity and output robust-

ness in the following Examples 3.2 and 3.3 by comparing these

notions to the classical notion of robustness from [3, 5].

Example 3.2. We consider the formula φ from Section 1 in which

req is declared as an input and gnt as an output signal, as well as

the tracew from Figure 1-(bottom). Using traditional robustness,

ρ(φ,w) = −1 — instead of measuring how far the system is from

generating a valid grant, traditional robustness measures the quality

of the request. The value can be interpreted as the cheapest way to

satisfy φ by lowering the signal req by 1 and effectively removing

all requests. In contrast, µ(φ,w) = −3 represents the measure of

how far the system is from responding to the requests by valid

grants.

Example 3.3. In this example, we study again the bounded re-

sponse property φ from Section 1, and we evaluate it on the tracew
from Figure 2. We first note that the output robustness µ(φ,w) = ∞,
indicating vacuous satisfaction of φ. In other words, there is no

modification of gnt that can result in the violation of φ for the

given fixed input req. In order to measure the level of vacuity of

φ with respect to req, we use instead input vacuity, which yields

ν (φ,w) = 2. This measure means that any change in req smaller

than 2 preserves vacuous satisfaction of φ.

Properties. Let us now formally establish the relation between input

vacuity and output robustness on the one hand and some distance

measures on the other hand. The results that we present also justify

and explain the classification of Table 1. In more detail, we define

two notions of distances between traces: based on input signals

alone, and based on output signals for a fixed input. From these

we derive notions of distances between a trace and a formula, seen

as the (Hausdorff) distance to the nearest trace that satisfies the

formula. These distances provide semantic, hence precise, counter-

parts of input vacuity and output robustness measures.

Let u,u ′ : T→ Rm be signals over variables {s1, . . . , sm }. The
absolute distance d(u,u ′) is defined as follows:

d(u,u ′) = sup

t ∈T,f (R)∈Θ,v :T→Rn−m
| f ((u ′∥v)R [t]) − f ((u∥v)R [t])| .

2
We remark that the meaning of µ(φ, w) = ν (φ, w) = 0 is ambiguous, since it

can be interpreted as w satisfying or falsifying φ . This is related to the fact that in

general the satisfaction/violation boundary may feature both satisfying and falsifying

traces, so that borderline traces cannot be classified. We omit from the table the cases

µ(φ, w) = ν (φ, w) = ±∞ as they can only happen when measuring robustness with

formulas that are obvious tautologies and contradictions built using subformula ⊤,

and are consequently of no practical interest.

2

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

1

4

req

0

1

2

3

4

gnt

0

2

3

Figure 2: Vacuously satisfied request-grant property with
signals req and gnt.

The absolute distance from u to some formula φ at time t , denoted
d(φ,u, t), is defined as follows:

d(φ,u, t) = inf

u′:T→Rm, v :T→Rn−m
(u′ ∥v,t) |=φ

d(u ′∥v,u∥v) .

Letv,v ′ : T→ Rn−m be signals over variables {sm+1, . . . , sn }. The
distance du (v,v

′) relative to signal u is defined as follows:

du (v,v
′) = sup

t ∈T,f (R)∈Θ
| f ((u∥v ′)R [t]) − f ((u∥v)R [t])| .

The distance from u to some formula φ relative to v at time t ,
denoted dv (φ,u, t), is defined as follows:

dv (φ,u, t) = inf

u′:T→Rm
(u′ ∥v,t) |=φ

d(u ′∥v,u∥v) .

We next consider an IA-STL specification (X ,Y ,φ) and assume

without loss of generality that X is of the form {s1, . . . , sm }. We

first show that the input vacuity ν (φ,u, t) for input signalu is a safe

approximation of the absolute distance from u to φ (or ¬φ).

Lemma 3.4. Let u : T→ Rm be a signal and t be a time. We have
−d(φ,u, t) ≤ ν (φ,u, t) ≤ d(¬φ,u, t).

As a result, ν captures the vacuity condition of the formula

relative to the input signal and measures its level:

Theorem 3.5. Let u : T→ Rm be a signal.
• If ν (φ,u) > 0 then u∥v |= φ for all v : T→ Rn−m ;
• If ν (φ,u) < 0 then u∥v |, φ for all v : T→ Rn−m .

Theorem 3.6. Let u,u ′ : T→ Rm be signals such that d(u,u ′) <
|ν (φ,u)|. We have u ′∥v |= φ iff for all v : T→ Rn−m , u∥v |= φ.

Next, we show that the output robustness µ(φ,w, t) is a safe

approximation of the distance from u to φ (or ¬φ) relative to v .

Lemma 3.7. Let u : T→ Rm and v : T→ Rn−m be signals and t
be a time. We have −du (φ,v, t) ≤ µ(φ,u∥v, t) ≤ du (¬φ,v, t).

As a result, µ captures the satisfaction status of the formula for

the combined input and output signals and measures the robustness

of the formula in terms of the output signal:

4

Theorem 3.8. Letw : T→ Rn be a signal.
• If µ(φ,w) > 0 thenw |= φ;
• If µ(φ,w) < 0 thenw |, φ.

Theorem 3.9. Let u : T→ Rm and v,v ′ : T→ Rn−m be signals
such that du (v,v ′) < |µ(φ,u∥v)|. We have u∥v |= φ iff u∥v ′ |= φ.

Discussion. Request-response specifications of the form □(α → β)
are commonly used to describe CPS requirements. The notion of

vacuity in [22] is restricted to the above form. In this view, a vacuous

trace is one that satisfies □(¬α), such that the request condition

never being satisfied creates no response obligation.

Observe that it is not necessarily the case that α and β respec-

tively range over input and output variables. Let x be an input andy
an output signal. The specifications □((x ≥ 0∧y ≥ 0) ⇒ □[0,2](y ≤
5)) and □(y ≥ 0 ⇒ □[0,2](y ≤ 5)) are both natural examples of

request-response properties in which the future output obligations

do not depend (only) on inputs, but (also) on the current state of the

output. In these cases, our input vacuity measure is complementary

to the definition of vacuity from [22]. Our notions of output ro-

bustness and input vacuity are general and can meaningfully apply

to any STL formula conjoined with input and output declarations

regardless of its syntactic form or semantic characteristics.

Signal variables can refer to quantities expressed in different

units of measurement, and the corresponding signal units influence

the robustness computation. In particular, the robustness value of

a specification referring to multiple signal variables with differ-

ent units is typically dominated by one of the signal variables. A

change in the measurement unit of that signal variable can drasti-

cally change to robustness value by changing the variable values

dominating the computation. This problem is orthogonal to the

input/output characterization of signal variables, yet we remark

that the notion of relative robustness that we introduce in this work

provides the means to address this problem. In particular, relative

robustness enables studying the effect of individual signals on the

overall robustness with respect to a specification.

The relative robustness can also be used to define symmetrical

notions of input robustness and output vacuity. The input robustness
measures the robustness of the system in terms of margins at the

input, for a fixed output. The output vacuity observes a vacuity

condition related to the output obligations holding in the absence of

input stimuli. We will refrain from further elaboration on these no-

tions, as we found these measures less intuitive and less applicable

as compared to the output robustness and input vacuity notions.

4 ROBUSTNESS-GUIDED TRACE
DIAGNOSTICS

In this section, we present a two-part trace diagnostic procedure.

The first part of the procedure is novel, we call it worst-case di-
agnostics. It marks the point (or set of points) corresponding to

the worst-case value in the trace relative to the specification. The

second part of the procedure is known from [19] as epoch diagnostic.
It provides additional context, by highlighting all parts of the trace

contributing to the violation/satisfaction.

Worst-Case Diagnostics. Wedefine a procedure that, given a formula

φ and tracew , returns the time(s) and signal variable(s) from which

the robustness value ρ(φ,w) originates. This worst-case diagnostics,

denotedDρ , is obtained by induction on the structure of the formula

and on time, based on the robustness values given by ρ. The operator
Dρ takes as argument a formula φ, trace w and time t ∈ T, and
returns a (set of) pair(s) in T×S , where S = {s1, . . . , sn } is the set of
variables. It provides the time(s) and signal variable(s) that witness

the robustness value of formula φ. Operator Dρ is defined relative

to some robustness indicator ρ that we take to be either µ, ν , or
the standard robustness indicator of [3, 5]. For a given tracew , the

worst-case diagnostics is computed by induction on the structure

of the formula φ and on time t as follows. We let

Dρ (⊤,w, t) = ∅

Dρ (f (R) > 0,w, t) = {(t , r) | r ∈ R}

Dρ (¬φ,w, t) = Dρ (φ,w, t)

Dρ (φ ∨ψ ,w, t) =


Dρ (φ,w, t) if ρ(φ,w, t) > ρ(ψ ,w, t)
Dρ (ψ ,w, t) if ρ(φ,w, t) < ρ(ψ ,w, t)
Dρ (φ,w, t) ∪ Dρ (ψ ,w, t) otherwise

Dρ (φUI ψ ,w, t) =


Dρ (φ,w,τφ) if ρ(φ,w,τφ) < ρ(ψ ,w,τψ)

Dρ (ψ ,w,τψ) if ρ(φ,w,τφ) > ρ(ψ ,w,τψ)

Dρ (φ,w,τφ) ∪ Dρ (ψ ,w,τψ) otherwise ,

where τψ = argmaxt ′∈t ⊕I min{ρ(ψ ,w, t ′), inft ′′∈(t,t ′) ρ(φ,w, t
′′)}

and τφ = argmint ′′∈(t,τψ) ρ(φ,w, t
′′).3 We then let Dρ (φ,w) =

Dρ (φ,w, 0).
The following proposition makes it precise in what sense we can

say that the worst-case diagnostics witnesses the robustness value

ofw relative to φ. Here cl(φ) denotes the closure of φ, meaning φ
and all of its sub-formulas.

Proposition 4.1. Let w be a signal and φ a formula. For all
(t , r) ∈ Dρ (φ,w), there exists f (R) > 0 ∈ cl(φ) such that r ∈ R
and |ρ(φ,w)| = |ρ(f (R) > 0,w, t)|.

Epoch Diagnostics. The epoch diagnostics procedure of [19] is based
on the notion of temporal implicant of [26]. Informally, a temporal

implicant is a property of the tracew that is a subset of the trace

that entails φ. Whenw |, φ, to explain the violation of φ byw one

uses instead an implicant of ¬φ.
We recover the epoch diagnostic by considering the characteristic

function χ (φ,w, t) ∈ {0, 1}, defined by χ (φ,w, t) = 1 iff (w, t) |= φ.
The epoch diagnostic is then obtained as Dχ (φ,w).

Example 4.2. We illustrate the combined worst-case and epoch

trace diagnostics procedure with the STL specification φ from Sec-

tion 1. We depict a signal that violates φ with diagnostics infor-

mation overlaid in Figure 3. The worst-case diagnostics depends

on the notion of robustness used. The circle and square markings

denote the outcome of the worst case robustness procedure guided

by the classical robustness and by the output robustness, respec-

tively. In this instance, the epoch diagnostics indicates two periods

responsible for the violation on each signal and the worst-case diag-

nostics indicates the following. The value of the classical robustness

comes from the req signal during the first period, while the value

3
In general, τψ is a set thus Dρ (φ, w, τψ) stands for the union of Dρ (φ, w, t ′) for
all t ′ in τψ while ρ(ψ , w, τψ) stands for the value of ρ(ψ , w, t ′) for any t ′ in τψ .

The same remark applies to τφ , Dρ (φ, w, τφ) and ρ(φ, w, τφ). The times at which

we perform the diagnostics and evaluate the robustness may include limit points t+
and t− for t ∈ T, as maxima and minima are sometimes found in the limit.

5

worst−case diagnostics driven by output robustness

epoch diagnostics
worst−case diagnostics driven by classical robustness

0 1

210

7

7

65432

6543

0

0

1

2

3

4

gnt

1

2

3

4

req

Figure 3: Combined epoch andworst-case diagnostics for the
specification φ.

of the output robustness comes from gnt signal during the second

period. The lightly shaded regions are the result of the epoch diag-

nostics computation and are independent of various definitions of

robustness.

Discussion. The worst-case diagnostics procedure presented in this

section is orthogonal to the notion of interface-aware specifications.

A shortcoming of temporal logic robustness indicators, as argued

in Section 1, is their opacity as to which signals are responsible for

the observed robustness value. In Section 3, we partly remedied

this situation by enabling the designer to provide a priori a subset
of signal variables over which the robustness should be measured.

This is particularly relevant when the specification describes an

input/output relation, because of the different ways tolerance mar-

gins relate to the system robustness in that case. The worst-case

trace diagnostics makes the robustness computation even more

transparent by providing a posteriori signal variable(s) and time(s)

from which the robustness value derives.

For interface-aware specifications the worst-case diagnostics

makes it possible to identify input and output states that are re-

sponsible for a given input vacuity condition or output robustness

value. A single time-variable pair may not be self-explanatory, and

we chose to combine it with the epoch diagnostics of [19]. The epoch

diagnostics provides additional context by highlighting which parts

of the signal trace contribute to the observed violation. We believe

the combined information of epoch and worst-case diagnostics

increases the usability of interface-aware robustness indicators.

5 APPLICATIONS AND EVALUATION
We implemented in Breach (1) the STL language extension, adding

the ability to declare the input/output interface of the specifica-

tion, (2) procedures for computing the output robustness and input

vacuity, (3) a procedure for computing combined epoch and worst-

case fault explanation. Below we describe applications of IA-STL to

address several common engineering tasks for two different model-

based applications. The first application is a powertrain control

(PTC) system. We use this publicly-available benchmark model

to explore different uses of IA-STL and illustrate its benefits. The

second application is a system model based on an automotive, hy-

drogen fuel cell (FC) system. We use this proprietary industrial

model to validate the proposed approach.

5.1 Powertrain Benchmark System
The powertrain control (PTC) benchmark model, described in detail

in [27], represents the dynamics associated with the control of

the engine air path for an internal combustion engine used in an

automobile. The air path model captures the dynamics of the air

and fuel that pass into the engine, effects of combustion, and the

expulsion of exhaust gases. A computer controller regulates the

amount of air and fuel injected into the engine cylinders; the goal is

to accurately control the ratio of air-to-fuel that enters the cylinders.

Accurate control of this system is critical to ensure overall vehicle

efficiency, to regulate the hydrocarbon emissions, and to maintain

a high quality of vehicle response — the so-called driveability. The
model is amean-value engine model, meaning that it represents the

dynamics of the fuel and air processes that take place in the engine

cylinders across several combustion cycles; it does not represent

individual combustion events that occur in the cylinders.

Inputs to the PTC air path system are accelerator pedal angle

θin and engine speed ω. The output from the system model is the

measured air-to-fuel ratio λ. Consider an overshoot requirement

for the PTC system, adapted from the one described in [20]:

φovershoot ≡ □[a,+∞)((θ
′
in −θin > c) ⇒ □[0,b](|λ−λref | < γ ·λref)) .

Here γ defines the maximum allowed overshoot value relative to

the reference value λref , and c is a threshold value used to deter-

mine when θin produces a step input. The additional input signal θ ′in
is shorthand for the value of θin shifted by d time units, such that

θ ′in[t] = θin[t +d] for all t . The antecedent clause of the implication

in φovershoot determines when a step occurs in the input, using a

small time delay d to decide whether the input is in a step condition.

The consequent clause indicates that the amount by which the

output λ overshoots the reference value λref should not exceed γ
times the reference value. Here, b is the period over which the over-

shoot value should be monitored after a step in input is experienced.

Note that the property is only checked after time t = a; before this
time the system is in a transient state. For our experiments, we use

γ = 0.01, λref = 14.7, a = 10.0 sec., b = 2.0 sec., c = 10.0 deg., and

d = 0.1 sec.

5.1.1 Robustness computation. We illustrate the difference between

classical robustness, output robustness, and input vacuity on the

PTC model. Figure 4 depicts a behavior of the PTC model, which

satisfies the specification φovershoot with:

• Classical robustness: 0.08;

• Output robustness:∞;

• Input vacuity: 0.05.

We observe that the classical robustness measures how far λ is
from reaching the overshoot condition. We recall that there is no

6

10 15 20 25

0

5

10 9.95→
θ
in

(d
eg

)

10 15 20 25

14.6

14.7

14.8
← 14.767

Time (sec.)

λ

λ

λ
ref

Figure 4: PTC robustness - an example of vacuity.

overshoot when |λ−λref | < λref ·γ . The maximal value of λ during
the disturbance is 14.767. It is easy to see that λ is 0.08 away from

an overshoot, the value reported by the classical robustness.

However, this value is misleading. If we observe closer the input

θin, we can notice that steps go from 0.0 to 9.95, instead of going to

10.0, as required by the specification. As a result, no obligation is

triggered in the output and the specification is vacuously satisfied by

the input. In other words, with this specific input, the specification

is guaranteed to hold regardless of what is observed in the output.

This fact is appropriately reflected by the ∞ value of the output

robustness. Finally, input vacuity of 0.05 indicates that a change of

at least 0.05 in θin is needed to trigger any obligation in the output.

We remark that in this example, the classical robustness differs

from both the output robustness and the input vacuity. In fact, it

coincides with the value of the output vacuity measure that we

mention in Section 3. Intuitively, the output vacuity measures the

strength of the output with respect to the specification regardless

of the input (and its vacuity). We believe that all such robustness

measures are independent, in that there are situations where they

all differ from each other on the same formula-trace pair.

5.1.2 Falsification. As the next application of IA-STL, we consider

the falsification problem. Given the specification φovershoot and the

system model, the task is to identify an input signal θin that results

in behaviors that do not satisfy φovershoot . We assume the class of

input signals for θin to be piecewise constant signals with two dis-

continuities. The falsification problem consists in solving a search

problem over two decision variables to identify a behavior that does

not satisfy φovershoot . We restrict the search to a maximum of 100

iterations.

In the first experiment, we initialize the input signal θin to a

step signal that rises from 0 to 10.1 degrees. This input satisfies the

left-hand side of the implication in φovershoot and non-vacuously

exercises the requirement. We run two instances of the falsification

problem with this initial condition. In the first instance, the cost

function is the classical robustness, and in the second instance,

the cost function is the output robustness. In this experiment, the

classical robustness value is dominated by the output signal λ, and
the two robustness measures coincide. As a consequence, the two

falsification problem instances yield the identical result, identifying

the same input that leads the system to violate the specification.

In the second experiment, we change the unit of θin from de-

grees to revolutions, where 1 revolution equals 360 degrees, and

we scale the threshold c accordingly to c = 10

360
= 0.028. We note

that the change of units does not affect the meaning of the specifi-

cation in any way. We repeat the two falsification instances from

the first experiment, and we observe an interesting phenomenon.

The classical robustness applied to the initial simulation is now

dominated by the measurements over the input θin and is equal to

0.028. This value corresponds to the segments of the input where

θin equals to 0, and in these parts of the behavior, the implication in

φovershoot is satisfied and is exactly c = 0.028 away from violating

the property. In fact, the classical robustness is dominated by the

0.028 measurement over the input, regardless of the size of the

input step. The optimizer tries to find a good search direction by

varying the size of the step but remains stuck in a plateau and is

hence not able to find a violating trace. This is exposed by our ex-

perimental results, shown in Figure 5-(left), where all 100 iterations

in the falsification procedure have the robustness value of 0.028.

0 50 100

−0.1

0

0.1

Iteration

C
l
a
s
s
i
c
a
l
R
o
b
u
s
t
n
e
s
s

0 50 100

−0.1

0

0.1

Iteration

O
u
t
p
u
t
R
o
b
u
s
t
n
e
s
s

Figure 5: PTC falsification with (left) classical robustness
and (right) output robustness as cost function.

In contrast, the falsification instance that uses the output robust-

ness as its cost function ignores the quantitative measurements

over the input. It appears to follow a gradient that eventually leads

to a violating trace after 88 iterations of the falsification algorithm,

as shown in Figure 5-(right).

5.1.3 Fault localization. In this section, we illustrate our combined

epoch and worst-case fault explanation procedure applied to the

PTC system. Figure 6 shows a trace in which the joint behavior of

θin and λ lead to the violation of the overshoot requirement, yielding

an output robustness of −0.203. The epoch trace explanation marks

in the simulation trace a step in the pedal angle θin and the ensuing
overshoot region in λ, occurring within 2.0 sec. The worst-case

fault explanation identifies the worst-case of the overshoot with the

red box, marking the time where λ reaches 15.05. This is the exact

point in time where the absolute difference between λ and λref is
|15.05 − 14.7| = 0.35, which is by 0.203 higher than the allowed

value of γ · λref = 14.7 · 0.01 = 0.147.

7

0 5 10 15 20 25

14

15

16

17

λ

11 12 13 14

14.6

14.8

15

0 5 10 15 20 25

0

5

10

15

λref

11 12 13 14

14

15

16

0 5 10 15 20 25

0

20

40

60

θin (deg)

11 12 13 14

0

20

40

Figure 6: PTC fault explanation with zoom in on the worst
behavior.

5.2 Fuel Cell System
The air path controller for the automotive hydrogen fuel cell (FC)

system is a complex model made for a production development

with close to 4,000 blocks and 400 discrete and continuous states.

It is described in [28]. The FC system uses a mixture of air and

hydrogen to produce electrical power. The FC stack is a system

that takes hydrogen gas and air as input and produces electrical

energy, which is used to charge the battery and power the motor.

The air path controller is used to regulate how much air enters

the FC stack. More precisely, the job of the air path controller is to

regulate the amount of volumetric air flow and air pressure that is

imparted to the FC stack. Accurate regulation is required to ensure

sufficient power output from the FC stack and to ensure a high

level of performance (driveability) from the vehicle.

The expected behavior is specified with 23 STL requirements.
4

In this section, we illustrate our results on a requirement R that

specifies a criterion on how much a control system response is

allowed to deviate from a reference behavior. The control system is

given the signal request REQUEST and generates a response signal

RESPONSE. Whenever a specific condition on the request signal

occurs, represented by the Boolean predicate cond(REQUEST), the
value of the signal RESPONSE is checked against its associated

reference signal CRITERIA. The STL requirement is given by

φ ≡ □(CHECK_FLAG→ RESPONSE ≥ CRITERIA) ,

where CHECK_FLAG ≡ cond(REQUEST).

5.2.1 Robustness Sensitivity Analysis with Heat Maps. The model

of the air path controller is parameterized with three parameters

p1, p2 and p3. These parameters affect the controller behavior and

consequently the degree to which the controller satisfies or violates

4
Details regarding the requirements, physical meaning of signals, and units are sup-

pressed for proprietary reasons.

its requirements. Given parameter values a, b and c of p1, p2 and

p3, we denote byw
(a,b,c)

the signal resulting from the simulation

of the system model with these parameter values.

The sensitivity of the model robustness to its requirements is

studied by uniformly varying these three parameters, simulating

the model for each combination of parameters and monitoring the

simulation outcomes against the STL requirements. Figure 7 shows

a 3D scatter plot, where each point denotes the satisfaction/violation

status of φ for the given simulation trace and the parameter values.

Figure 7: Satisfaction/violation of φ for specific combina-
tions of parameter values.

In addition to the qualitative impact of parameter variation to the

satisfaction of φ, one can perform a more quantitative sensitivity

analysis by calculating the robustness degree of the simulation re-

sults with respect to the specification for each choice of parameter

values. The heat map obtained by computing the robustness degree

ρ(φ,w(a,b,90)) is shown in Figure 8. Neither the scatter plot nor

the heat map informs us about the robustness of the FC system.

This is because the unitless Boolean input CHECK_FLAG with a

normalized range of 1.0 dominates the computation. T is 1.0: the re-

ported overall robustness is either 0.5 ifw(a,b,90) satisfies φ, or −0.5
otherwise. One way to circumvent the problem is to manually scale

input signals so that they do not dominate the computation. Instead

we provide a general solution to this problem via the appropriate

notion of output robustness.
We repeat the same experiment in which we declare REQUEST

as an input and RESPONSE as an output signal, and compute the

relative output robustness µ(φ,w(a,b,90)). Figure 9 shows the re-

sulting heat map. We can see that the output robustness measures

the quality of the system output, providing more interesting and

intuitive information about the system performance.

5.2.2 Fault localization. In this section we validate the enhanced

fault localization method on the FC model. For demonstration pur-

poses we choose a simulation trace that violates the requirement

φ and contrast the impact of the robustness measure on the fault

localization procedure.

8

Figure 8: Heatmap for the Fuel Cell system, requirement R
and p3 = 90, using classical STL robustness computation.

Figure 9: Heatmap for the Fuel Cell system, requirement R
and p3 = 90, using IA-STL output robustness computation.

Figure 10 depicts the outcome of the fault localization when

worst-case diagnostics is driven by classical STL robustness. The

overall robustness value is dominated by the Boolean input, hence

the fault localization procedure identifies points in the input as

reasons for the worst-case robustness.

By contrast, combining fault localization with the IA-STL output

robustness, as shown in Figure 11, allows our fault localization pro-

cedure to correctly identify the precise time point that is responsible

for the worst-case deviation of the output from the reference.

5.2.3 Falsification. Finally, we illustrate the potential benefits of
using the IA-STL output robustness computation to drive a falsifica-

tion procedure. We compare falsification results performed with the

traditional STL robustness and enhanced IA-STL output robustness

computations. We fix an input trace for an FC system model and

vary the system parameters p1, p2 and p3 to attempt to falsify the

requirement φ. For both cases, we use a search procedure based

Figure 10: Fault localization, driven by traditional STL robus-
ntess.

Figure 11: Fault localization, driven by the IA-STL output ro-
bustness.

on the MATLAB
®
local search optimizer fmincon. The search pro-

cedure as implemented in Breach uses a combination of the local

search method provided by fmincon with random restarts when a

local optimum is detected.

Figure 12-(left) illustrates the falsification results using tradi-

tional falsification robustness computations. The figure shows the

evolution of the STL robustness across many iterations of the search

procedure. We can observe that the solver either exhibits the hall-

marks of random restarts (discontinuities) or is flat. Also, the ma-

jority of the flat regions are at the 0.5 value; this is due to the fact

that the Boolean input dominates the robustness value when com-

puted using the traditional method. This value does not convey

information about the behavior of the system output.

By contrast, consider the results of the falsification procedure

using the IA-STL output robustness computations, as shown in

9

Figure 12: Falsifcation results, using classical STL (left) and
output IA-STL (right) robustness.

Figure 12-(right). We can see in the figure that there appear to be

fewer random restarts.

Despite the fact that we do not falsify the property using either

traditional STL robustness or the enhanced version, the above ex-

ample demonstrates that the STL output robustness computation

provides more meaningful cost information that could potentially

be exploited by an appropriate solver to better guide the search.

6 CONCLUSION AND FUTUREWORK
In this work, we enhanced signal temporal logic (STL) with support

to define input-output interfaces. We adapted robustness compu-

tations to exploit this interface and consequently provide deeper

insights into the system behaviors with respect to their specifi-

cations. We demonstrated the value of the enhanced robustness

notions by using them to perform three analysis activities: robust-

ness sensitivity analysis, fault localization, and search-based testing.

We illustrated these analysis approaches on two examples, includ-

ing an industrial automotive fuel cell system.

We plan to extend the presented work in several directions. The

input/output signature is a natural pre-requisite for compositional

reasoning about the system and its requirements. We will in par-

ticular study how we can leverage IA-STL to do compositional

testing. We have seen that output robustness can be used to pre-

cisely identify portions of the input and output signals that explain

the violation of a specification. We will study how this information

could be used to explain the reason for the violation in terms of the

system model.

ACKNOWLEDGMENTS
The authors would like to thank Arthur Wu and Jared Farnsworth

from Toyota Motor North America for their help in understand-

ing and using the hydrogen fuel cell model and for many helpful

discussions. This research was supported in part by the Austrian

Science Fund (FWF) under grants S11402-N23 (RiSE/SHiNE) and

Z211-N23 (Wittgenstein Award).

REFERENCES
[1] J. Kapinski, J. V. Deshmukh, X. Jin, H. Ito, and K. Butts, “Simulation-based ap-

proaches for verification of embedded control systems: An overview of traditional

and advanced modeling, testing, and verification techniques,” IEEE Control Sys-
tems Magazine, vol. 36, no. 6, pp. 45–64, Dec 2016.

[2] O. Maler and D. Nickovic, “Monitoring temporal properties of continuous signals,”

in Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems
(FORMATS/FTRTFT), 2004, pp. 152–166.

[3] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic specifications,” in

Formal Approaches to Software Testing and Runtime Verification, First Combined

International Workshops, FATES 2006 and RV 2006, Seattle, WA, USA, August 15-16,
2006, Revised Selected Papers, 2006, pp. 178–192.

[4] ——, “Robustness of temporal logic specifications for continuous-time signals,”

Theor. Comput. Sci., vol. 410, no. 42, pp. 4262–4291, 2009.
[5] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over real-valued

signals,” in Formal Modeling and Analysis of Timed Systems (FORMATS), 2010, pp.
92–106.

[6] A. Donzé, T. Ferrère, and O. Maler, “Efficient robust monitoring for STL,” in

International Conference on Computer Aided Verification. Springer, 2013, pp.

264–279.

[7] A. Donzé, “Breach, A toolbox for verification and parameter synthesis of hybrid

systems,” in Computer Aided Verification, 22nd International Conference, CAV 2010,
Edinburgh, UK, July 15-19, 2010. Proceedings, 2010, pp. 167–170.

[8] Y. Annpureddy, C. Liu, G. E. Fainekos, and S. Sankaranarayanan, “S-taliro: A tool

for temporal logic falsification for hybrid systems,” in Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), 2011, pp. 254–257.

[9] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Falsification of LTL safety properties

in hybrid systems,” in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 2009, pp. 368–382.

[10] T. Nghiem, S. Sankaranarayanan, G. Fainekos, F. Ivancić, A. Gupta, and G. J.

Pappas, “Monte-carlo techniques for falsification of temporal properties of non-

linear hybrid systems,” in Proceedings of the 13th ACM international conference on
Hybrid systems: computation and control. ACM, 2010, pp. 211–220.

[11] W. Li, A. Forin, and S. A. Seshia, “Scalable specification mining for verification

and diagnosis,” in Proceedings of the 47th design automation conference. ACM,

2010, pp. 755–760.

[12] E. Bartocci, L. Bortolussi, and G. Sanguinetti, “Data-driven statistical learning

of temporal logic properties,” in Formal Modeling and Analysis of Timed Systems
(FORMATS), 2014, pp. 23–37.

[13] Z. Kong, A. Jones, and C. Belta, “Temporal logics for learning and detection of

anomalous behavior,” IEEE Trans. Automat. Contr., vol. 62, no. 3, pp. 1210–1222,
2017.

[14] E. Asarin, A. Donzé, O. Maler, and D. Nickovic, “Parametric identification of

temporal properties,” in Runtime Verification, 2011, pp. 147–160.
[15] H. Yang, B. Hoxha, and G. Fainekos, “Querying parametric temporal logic prop-

erties on embedded systems,” in IFIP International Conference on Testing Software
and Systems. Springer, 2012, pp. 136–151.

[16] X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia, “Mining requirements from

closed-loop control models,” IEEE Trans. on CAD of Integrated Circuits and Systems,
vol. 34, no. 11, pp. 1704–1717, 2015.

[17] A. Bakhirkin, T. Ferrère, and O. Maler, “Efficient parametric identification for STL,”

in Proceedings of the 21st International Conference on Hybrid Systems: Computation
and Control (part of CPS Week). ACM, 2018, pp. 177–186.

[18] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J. Raclet, P. Reinkemeier, A. L.

Sangiovanni-Vincentelli, W. Damm, T. A. Henzinger, and K. G. Larsen, “Contracts

for system design,” Foundations and Trends in Electronic Design Automation, vol. 12,
no. 2-3, pp. 124–400, 2018.

[19] E. Bartocci, T. Ferrère, N. Manjunath, and D. Nickovic, “Localizing faults in

simulink/stateflow models with STL,” in Proceedings of the 21st International
Conference on Hybrid Systems: Computation and Control (part of CPS Week), HSCC
2018, Porto, Portugal, April 11-13, 2018, 2018, pp. 197–206.

[20] J. Kapinski, X. Jin, J. Deshmukh, A. Donze, T. Yamaguchi, H. Ito, T. Kaga, S. Kobuna,

and S. Seshia, “ST-Lib: A library for specifying and classifying model behaviors,”

SAE Technical Paper, Tech. Rep., 2016.

[21] T. Akazaki, “Falsification of conditional safety properties for cyber-physical sys-

tems with gaussian process regression,” in Runtime Verification - 16th International
Conference, RV, 2016, pp. 439–446.

[22] A. Dokhanchi, S. Yaghoubi, B. Hoxha, and G. Fainekos, “Vacuity aware falsifica-

tion for MTL request-response specifications,” in 2017 13th IEEE Conference on
Automation Science and Engineering (CASE), Aug 2017, pp. 1332–1337.

[23] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh, “Efficient detection of vacuity in

ACTL formulaas,” in Computer Aided Verification, 9th International Conference,
CAV, 1997, pp. 279–290.

[24] O. Kupferman and M. Y. Vardi, “Vacuity detection in temporal model checking,”

in Correct Hardware Design and Verification Methods (CHARME), 1999, pp. 82–96.
[25] T. Ball and O. Kupferman, “Vacuity in testing,” in Tests and Proofs, Second Interna-

tional Conference, TAP, 2008, pp. 4–17.
[26] T. Ferrère, O. Maler, and D. Nickovic, “Trace diagnostics using temporal impli-

cants,” in Automated Technology for Verification and Analysis, 2015, pp. 241–258.
[27] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and K. Butts, “Powertrain Control

Verification Benchmark,” in Proc. of Hybrid Systems: Computation and Control,
2014, pp. 253–262.

[28] A. Adimoolam, T. Dang, A. Donzé, J. Kapinski, and X. Jin, “Classification and

coverage-based falsification for embedded control systems,” in Computer Aided
Verification, R. Majumdar and V. Kunčak, Eds. Cham: Springer International

Publishing, 2017, pp. 483–503.

10

	Abstract
	1 Introduction
	2 Related Work
	3 Interface-Aware STL
	4 Robustness-Guided Trace Diagnostics
	5 Applications and Evaluation
	5.1 Powertrain Benchmark System
	5.2 Fuel Cell System

	6 Conclusion and Future Work
	Acknowledgments
	References

