
From Real-Time Logic to Timed Automata∗

THOMAS FERRÈRE, IST Austria

ODED MALER
†
, CNRS-Verimag, University of Grenoble-Alpes

DEJAN NIČKOVIĆ, AIT Austrian Institute of Technology

AMIR PNUELI
‡
,Weizmann Institute of Science and New York University

We show how to construct temporal testers for the logic MITL, a prominent linear-time logic for real-

time systems. A temporal tester is a transducer which inputs a signal holding the Boolean value of atomic

propositions, and outputs the truth value of a formula along time. Here we consider testers over continuous-

time Boolean signals that use clock variables to enforce duration constraints, as in timed automata. We first

rewrite the MITL formula into a “simple” formula using a limited set of temporal modalities. We then build

testers for these specific modalities, and show how to compose testers for simple formulae into complex

ones. Temporal testers can be turned into acceptors, yielding a compositional translation from MITL to timed

automata. This construction is much simpler than previously known and remains asymptotically optimal. It

supports both past and future operators and can easily be extended.

CCS Concepts: • General and reference→ Verification; • Theory of computation→ Timed and hybrid
models; Modal and temporal logics;

ACM Reference Format:
Thomas Ferrère, OdedMaler, Dejan Ničković, and Amir Pnueli. 2020. From Real-Time Logic to Timed Automata.

J. ACM 1, 1 (October 2020), 31 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
This paper presents a novel compositional translation from a real-time specification formalism,

metric interval temporal logic (MITL) [5] with both past and future operators, to timed automata

[4]. Such a translation is a crucial ingredient in the application of formal and semi-formal system

validation methodologies (model checking, model-based testing, runtime verification) to real-time,

that is, to models that capture quantitative timing aspects of system behaviors. To put this work in

context, we start by describing the role of such a translation in the classical “untimed” setting and

summarize previous work on lifting it to the quantitative timed case.

Temporal logic [58, 59] is a commonly-used specification formalism for discrete transition

systems. The algorithmic verification of such systems goes by the name model checking, because
decision procedures that check whether a sequence, set of sequences, or system is a model of a

temporal logic formula play a central role in the verification process [12, 14, 26–28, 43, 70]. In the

linear-time context one takes the negation ¬φ of the specification and derives from it an automaton-

like device A¬φ that accepts exactly sequences of states and actions that violate φ [76] and then

checks whether the set of behaviors generated by the system model intersects the language ofA¬φ .

∗
This research was supported in part by the Austrian Science Fund (FWF) under grants S11402-N23 (RiSE/SHiNE) and

Z211-N23 (Wittgenstein Award).

†
February 21, 1957 – September 3, 2018.

‡
April 22, 1941 – November 2, 2009.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.

0004-5411/2020/10-ART $15.00

https://doi.org/0000001.0000001

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

:2 Thomas Ferrère, Oded Maler, Dejan Ničković, and Amir Pnueli

For discrete-time models, used for functional verification of software or synchronous hardware,

the logical situation is rather mature. Logics such as LTL (linear-time temporal logic) or CTL

(computation-tree logic) are commonly accepted and incorporated into verification tools. For LTL a

variety of efficient algorithms for translating a formula into an equivalent automaton have been

proposed [33, 34, 44, 73] and underly industrial standards [31] such as PSL [1] and SVA [2].

When a temporal logic such as LTL is used in practice, one usually considers only its future
fragment, where the temporal modalities refer to future occurences of events. It has been argued

that such a futuristic specification style is more natural for humans, and this approach has been

indeed adopted by aforementioned industrial specification languages PSL and SVA. Moreover, the

past fragment of LTL does not add any expressive power to its future fragment, when interpreted

over sequences that have a starting point.
1

However, combining both past and future LTL operators may still be advantageous by allowing

to express certain properties more succinctly [60] and more naturally. To see the latter point

consider first the very typical property “every p is followed by a q” stating, for example, the fact

that every request is eventually granted. This property is naturally expressed by the future property

0(p →1q). On the other hand the dual property “every q should have been preceded by a p”
forbidding unsolicited grants is expressed naturally using past operators as0(q →Qp) while its
formulation in pure future LTL is cumbersome. Another property which makes use of past operators

and whose realization in dense time will be discussed in the sequel, is ↑ p (read “rising edge of

p”) which holds at time instants where p becomes true. This property is naturally expressed as

p∧¬�p, which says literally “p and not previously p”. A more exhaustive list of mixed future-past

properties can be found in [49].

When considering timedmodels and specification formalisms whose semantics involves the time

domain R≥0 rather than N, the situation is somewhat less satisfactory [7, 9, 36, 74]. Many variants

of real-time logics [5, 8, 13, 37, 39, 48, 71, 77] as well as timed regular expressions [10, 11] have been

proposed but the correspondence between simply-defined logics and variants of timed automata

(automata with auxiliary clock variables [4]) is not as simple and canonical as for the untimed case,

partly, of course, due to the additional complexity of the timed model (see also [56]). Consequently,

existing verification tools for timed automata rarely use rich temporal properties.

One of the most popular dense-time extensions of LTL is the logicMITL (metric interval temporal

logic) introduced in [5] as a fragment of the logicMTL [48] reinterpreted over continuous time. The

semantic objects that satisfy or violateMITL formulae are Boolean signals, functions from R≥0 to

valuations of the propositional variables appearing in the formula. The principal modality of MITL

is the timed until denoted UI and parameterized by nonsingular interval I with integer endpoints.

Formula pU[a,b] q is satisfied at any time instant t by a signal that admits q at some t ′ ∈ [t +a, t +b],
and where p holds continuously from t to t ′. The restriction of time modalities to positive-length

intervals was intended to guarantee decidability although later, unexpected results [66] showed

that this restriction is not necessary for deciding MTL over finitary event-based semantics. The

original version of MITL contained only future temporal operators and [5] give a procedure for

translating anMITL formula into a nondeterministic timed automaton with the satisfiability and

model-checking problems being EXPSPACE-complete. An investigation of past and future versions

of MITL was carried out in [6] using two-way timed automata. Several variants of MITL with finite

automata [37, 77] and threshold counting [42] have been studied. We also mention the connections

of MITL and its extensions with monadic logic [36, 41, 77].

1
The suggestion to use this “anchored” model of time for temporal logic was first advocated in [57]. It makes the time

domain isomorphic to N, rather than Z. Languages over bi-infinite sequences have been studied in [65].

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

From Real-Time Logic to Timed Automata :3

The problem of model checking real-time systems has been reviewed in [16] and we briefly

survey some related work on MITL. In [66], against a previously held belief the satisfiability of

future-only MTL was shown decidable over the semantic model of timed words. The decision

procedure in [66] involves translating MTL formulae to one-clock alternating timed automata.

Based on this result, [17, 18] describes a novel translation fromMITL to timed automata using a

form of dealternation applicable to the alternating timed automata translating MITL. The resulting

implementation [19] can be interfaced with the timed automaton model checker Uppaal [51]. Using

an equisatisfiable reduction, this allows to also decide the satisfiability of MITL over the semantic

model of continuous-time Boolean signals [20]. Satisfiability-preserving translations fromMITL

to LTL were also proposed, using a timer normal form [40] or through the introduction of clock

variables in the logic [15], the latter reduction enjoying a concrete implementation. In [46], the

authors propose a super-dense time semantics for the MITL0,∞ fragment of the logic, devise an

encoding of both specifications and timed automata models to symbolic transition systems and

develop a bounded model checking algorithm. A compositional translation from MITL with past to

signal automata is proposed in [47]. This construction relies on the rewriting of the original formula

to another equisatisfiable formula that uses only past operators. Consequently, this translation can

be done only for specifications with bounded future modalities. In [72], some steps of the original

translation of MITL to timed automata [5] have been formalized using the proof system PVS [67],

correcting an error in the original semantics of the timed release operator.2

In our opinion, the tableau-based automaton construction in [5] remains unintuitive and rather

complicated. Preliminary versions of this paper [53, 54] introduced a much simpler alternative to

the construction of [5]. The modular translation from future MITL to timed automata in [54] is

based on the concept of timed temporal testers, which were already applied in the discrete-time

context to LTL [45, 62] and CTL
∗
[44]. In this framework, one associates a nondeterminstic (timed)

transducer with every sub-formula according to its temporal operator. At any time instant t , the
output of the transducer represents the satisfiability of that sub-formula at t . A network of testers

whose structure conforms to the parse tree of the formula recognizes the timed language defined by

the formula. The procedure is conceptually simpler than the ones commonly used to model-check

LTL based on alternating automata or tableaux, which often rely on generalized Büchi automata as

an intermediate step [33, 35]. The temporal tester directly provides such an automaton.

RegardingMITL, part of the simplicity in the construction of [54] was a result of a restriction

imposed on the considered signals and, consequently, on the syntax and semantics of the temporal

MITL operators which slightly deviated from those of [5]. First, models were restricted to signals

for which the time domain can be covered by left-closed right-open intervals on each of which the

signal value remains constant. This restriction forbids signals in which a value can hold in isolated

“singular” time points. To guarantee the closure of this property under temporal operators, intervals

in the time modalities were then restricted to be closed of the form [a,b]. A slight modification

in the semantics of the until operator was also considered, insisting that in order for pU q to

hold, there should be a time instant in which both p and q hold. By contrast the present paper

allows all four combinaisons of timing intervals, i.e. of the form [a,b], [a,b), (a,b] and (a,b), but
obtains a simplified translation by rewriting modalities timed by (a,b) into other modalities timed

by intervals of the form (0, c) only.
Although the simplification achieved in [54] by restricting the syntax and semantics to closed

intervals will be appreciated by anyone comparing it with the present paper, we observe that from

a practical perspective, left-closed right-open signals are not always sufficient [74]. Consider for

example the rising edge formula ↑ p that should hold at moments where p changes its value to

2
See also [32] for a corrected version of the release operator and its rewriting using until.

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

:4 Thomas Ferrère, Oded Maler, Dejan Ničković, and Amir Pnueli

true. Such events, that is, formulae that are valid only at isolated time points, are very natural yet

cannot be expressed without allowing signals with discontinuities of arbitrary form (left-, right-, or

left- and right-). Reintroducing the original interpretations of until and since enables the natural
encoding of events in the signal semantics under consideration.

The rest of the paper is organized as follows. In Section 2 we give an introduction to the idea

of temporal testers and then show in Section 3 how they are used to translate LTL to automata.

In Section 4 we introduce the semantic domain of signals, present the logic MITL and establish

some valid rewriting rules onMITL formulae that allow us to later focus on the construction of

testers for simple operators. The main result, the compositional translation is described in Section 5

followed by a summary and a short discussion of potential applications in Section 6.

2 TEMPORAL TESTERS
The standard methodology for checking whether all the behaviors of a finite-state system S modeled

by an automaton AS satisfy a specification expressed as a temporal property φ involves building

a Büchi automaton A¬φ that accepts exactly all the (infinite) words that violate the property φ.
The model checking problem, that is, deciding the language inclusion L(AS) ⊆ L(φ) between the

possible behaviors of AS and the behaviors satisfying φ, reduces to checking whether the product

automaton AS × A¬φ accepts the empty language, implying that there exists no computation of S
which violates φ.

In the discrete-time domain, the construction ofA¬φ typically follows a tableau-based procedure

based on expansion formulae that separate the variable values that have to hold at the current
position from the future obligations which are propagated to the next position, for example0φ ⇔

φ ∧20φ. The expansion rules rely heavily on the next operator2 which allows to separate

clearly current obligations from future ones. Obviously this idea cannot be directly applied to

behaviors defined over a dense time domain.

The growing complexity of digital systems calls for more modular and compositional reasoning

about them. We note that existing hierarchical and incremental design practices already provide

opportunity for some non-negligible amount of specification reuse. Traditional tableau-based

acceptors are not modular in nature. The lack of modularity is due to the fact that an acceptor

Aφ provides information concerning the satisfaction of φ by the entire input sequence starting at

position 0, but no information concerning satisfaction of φ by the input sequence suffixes starting

at any position t > 0. In particular, when Aφ and Aψ are the acceptors for formulae φ and ψ ,
respectively, there is no simple recipe to compose them to obtain an acceptor for the formula φUψ .
The property φUψ is satisfied iff there is a future position t > 0 whereψ is true, and that φ holds

continuously at all positions t ′ such that 0 < t ′ < t . The acceptors Aφ and Aψ do not provide this

information.

An alternative style of construction (see [75]) uses alternating automata [21, 23], automata that

employ both existential and universal nondeterminism. The construction of alternating automata

from formulae is, in some sense, more modular and elegant, however it is not compositional in the

sense of this paper: the automaton for a formula may make transitions to the automata of its sub-

formulae but it does not observe the evolution of their satisfiability over time. Since model-checkers

deal only with existential nondeterminism, the universal nondeterminism has to be removed by a

kind of subset construction [63] (also called dealternation) at exponential cost.
Our construction is based on temporal testers, an orthogonal solution to the problem of com-

positionality where additional structure imposes the responsibility of being composable on the

automata for the sub-formulae [62, 69]. Consider a formula φ defined over propositional variables

p1, . . . ,pn . A temporal tester Tφ for φ is a transducer whose input alphabet is Bn (vectors of n
Boolean values 0 or 1), representing valuations of the propositional variables appearing in φ, and

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

From Real-Time Logic to Timed Automata :5

whose output alphabet is B = {0, 1}. While observing an input sequence w , the tester outputs a

Boolean sequence u such that u[t] = 1 iff φ is satisfied at t , that is (w, t) |= φ. Hence, unlike an
acceptor Aφ which tells us whether the entire input sequence satisfies φ, the temporal tester Tφ
does so for every suffix ofw . This stronger condition allows testers to compose naturally: we can

view the output of Tφ as a propositional variable q satisfying0(q ↔ φ). For a formula φ which

has φ1 and φ2 as sub-formulae we can then build a tester Tφ over input variables q1 and q2, which
will take the outputs of Tφ1

and Tφ2
as inputs for Tφ . The decomposition can be described in logic

as replacing formula φ by the equisatisfiable formula φ ′ ∧0(q1 ↔ φ1) ∧0(q2 ↔ φ2), where φ
′

is obtained from φ by replacing φ1 by q1 and φ2 by q2.
3
After repeating the process for all other

non-atomic subformulae we obtain a formula of the form qn ∧
∧n

i=10(qi ↔ φ ′
i) where every φ

′
i

has only atomic sub-formulae. Taking the composition of testers for all φi (and projecting away the

qi variables) gives us a tester Tφ for φ. Further composing Tφ with an acceptor of proposition qn
yields an acceptor for φ. A construction of a network of testers for the formula (p ∧2q)U0 r is
illustrated in Figure 1; for simplicity we label output signals by formulae they stand for in the place

of fresh variable names.

T∧

T2

T0

TU

p

r

q

2q

p ∧2q

0 r

(p ∧2q)U0 r

Fig. 1. Composition of temporal testers for (p ∧2q)U0 r .

Below, we list some properties of temporal testers that make them particularly useful:

• The construction of temporal testers is completely modular. It suffices to build testers for

basic temporal and logical operators, ¬, ∧,2 andU in the case of LTL. Testers for arbitrary

formulae are constructed by synchronous, input-output composition of these building blocks.

• Temporal testers naturally support extensions of the specification language. Once a new

language construct is introduced, its corresponding tester can be naturally composed with

testers for existing operators. This feature has already been used to extend compositional

construction of testers for LTL [45] with the regular expression-like operators of PSL [68]

and with branching-time operators of CTL
∗
[44]. Likewise the combination of future and

past operators comes for free.

• Testers for specific properties that have been expressed directly by an automaton or a program

without a formal logical description, or that have been optimized [24] can be combined with

testers developed in a different way, as long as they produce the right output.

3
This is reminiscent of Ceitin’s procedure for transforming Boolean formulae to CNF

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

:6 Thomas Ferrère, Oded Maler, Dejan Ničković, and Amir Pnueli

• Unlike certain tableau-based techniques, the construction of temporal testers does not re-

quire the existence of expansion formulae. This is particularly important for testers defined

algorithmically and for real-time logics such as MITL where the meaningfulness of the next
operator2 is not evident.

• Although temporal testers are transducers that incorporate additional structure with respect

to acceptors, the complexity of constructing such a tester for an arbitrary LTL formula is not

worse than that of an acceptor. In its symbolic representation, the size of a tester is linear in

the size of the formula. This implies that the worst-case state complexity is exponential for

LTL formulae, which is an established lower bound.

The idea of transducers that output the truth value of a temporal formula at each position was

first considered in [61, 62] as a conceptually simpler translation from temporal logics toω-automata.

The term testers was introduced in [45] who define such transducers for the purpose of efficient

LTL-based formal verification. A similar idea was also considered in [22] in the context of symbolic

implementation of a tableau construction. The observation that a Boolean variable such as the one

output by a tester can replace the sub-formula itself in the context of model checking has been

considered in [25]. Surprisingly, these techniques went unnoticed in the verification community

until more recently. In [44] testers are extended to branching time, leading to a new CTL
∗
model

checking algorithm. The properties of temporal testers have been studied in detail with respect to

acceptors and alternating automata in [69] and much of the material in this section is borrowed

from it.

3 LINEAR TEMPORAL LOGIC
In this section we recall the construction of testers for the basic LTL operators (including past ones).
We assume familiarity with LTL, automata over ω-words, and transducers. In brief, LTL is defined

over a set of propositional variables P = {p1,p2, . . . ,pk } with Boolean operators ¬, ∧ and temporal

operators next 2, previously�, until U, and since S. The semantics of LTL is over sequences

N 7→ 2
k
, through a satisfaction relation |= between a pair (w, t) of a sequence w and time t ∈ N,

and a formula φ. This relation is defined inductively by letting

(w, t) |=2φ iff (w, t + 1) |= φ

(w, t) |= φ1 U φ2 iff ∃t ′ ≥ t , (w, t ′) |= φ2 and ∀t ′′ ∈ [t , t ′), (w, t ′′) |= φ1

and symmetrically for past operators� and S.

We observe that the satisfaction of an LTL formula φ over propositions p1, . . . ,pk by a sequence

w at position t is a φ-dependent function of the truth values of p1, . . . ,pk at some other positions.

The satisfaction relation can be viewed as the characteristic function χφ which maps sequences

w : N→ Bk into sequences u = χφ (w) : N→ B such that for every t ≥ 0, u[t] = 1 iff (w, t) |= φ.4

For formulae φ of the form f (p) or f (p1,p2) for some temporal or propositional operator f , by
slight abuse of notation we simply write χ f in place of χφ . The inductive semantics of LTL can then

be seen as a recipe for building the characteristic function of φ from the characteristic functions of

its sub-formulae, as illustrated in Figure 1. These characteristic functions which are to be realized

by the temporal testers are instances of the class of sequential functions (transducers), functions
that map sequences to sequences. A particular sub-class of sequential functions are the causal
(sometime called retrospective [74]) functions.

Definition 3.1 (Causal Sequential Functions). A sequential function f : Aω → Bω is said to be

causal if for every u ∈ A∗
and v,v ′ ∈ B∗

such that |u | = |v | = |v ′ | and every x ,x ′ ∈ Aω and

4
Assuming the Boolean value in u is accessed by propositional variable q , recall that the relation between u andw can also

be expressed by the formula0(q ↔ φ).

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

From Real-Time Logic to Timed Automata :7

y,y ′ ∈ Bω :
f (u · x) = v · y and f (u · x ′) = v ′ · y ′ implies v = v ′.

In other words, the value of f (w) at time t may depend only on the values {w[t ′] : t ′ ≤ t}. Causal
functions are realized naturally by deterministic automata with output (sequential synchronous

transducers) that produce the next output symbol as they read the next input symbol. The semantics

of the past fragment of LTL can be expressed using causal functions, because the satisfaction of

both previously� and since S operators now (at position t) is determined according to what has

happened until now (positions t ′ ≤ t).
The characteristic function of�, is nothing but a shift operator, known in other contexts as

the unit delay operator z−1, defined as u[t + 1] = w[t] for t > 0, and u[0] = 0. The temporal tester

for�p, shown in Figure 2-(a), is a simple one-bit input-driven shift register. At each time instant

this transducer reads the current value of p, memorizes it by taking a transition to the appropriate

target state, and outputs the previous value as encoded by the source state of the transition. By

convention, we use q as the output variable. Being at state s0 means that p held in the previous step,

while being at s1 means that it did not hold. When the new value of the input is p, the automaton

will move to state s1, while if it is ¬p it remains in s0. The tester is input-deterministic, as from any

state there is a single outgoing transition for a given input symbol.

s0 s1

p/¬q

¬p/q

¬p/¬q

p/q

s0 s1

p/¬q

¬p/q

¬p/¬q

p/q

(a) (b)

Fig. 2. Temporal testers for LTL: (a) operator�; (b) operator2.

On the other hand, the characteristic functions associated with future LTL operators are not

causal as the satisfaction at t may depend on satisfaction at some t ′ > t . The output of the next
operator2 at time t depends on the input at t + 1 and, even worse, the output of the until operator
U at t may depend on input values at arbitrary larger t ′.
One can think of two ways to realize acausal sequential functions. The first approach, which

works for operators with a bounded level of acausality, for example2d
(the next operator nested d

times), is to dissociate the time scales of the input and the output, that is, let the automaton ignore

the first d input symbols, and then let u[t] = w[t + d]. Unfortunately, this approach does not work

for unbounded acausality and also does not compose well. In the alternative approach that we use,

the temporal testers respond to the input synchronously, but since at time t the information might

not be sufficient to determine the output, the tester has to “guess” the output nondeterministically

and split the computation into two runs, one that predicts u[t] = 1 and one that predicts u[t] = 0.

Each of the runs needs to remember the predictions it has made so far and, progressively, abort

runs whose predictions turn out do be false. An automaton for an operator with acausality of depth

d may need to memorize up to 2
d
past predictions.

The similarity between remembering past observations (in a shift register) and remembering

predictions is no coincidence. The temporal tester for2, depicted in Figure 2-(b) can be obtained

by reversing the transitions of the automaton for�. The automaton for2p is output-deterministic

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

:8 Thomas Ferrère, Oded Maler, Dejan Ničković, and Amir Pnueli

and its state memorizes the prediction it made in the previous step. The prediction is used to abort,

in the next step, runs whose predictions turned out to be wrong.

To understand how such an acausal tester works, let us look at Figure 3-(a) which shows the

2-tester in an extended form where abortions due to wrong predictions are made explicit. States

s1 indicates that the prediction made in the current step is q, hence from this state, observing ¬p
contradicts the prediction and the run is aborted (abort transition). Input p confirms the prediction

and the automaton splits the remaining run into two by moving nondeterministically to s0 and s1,
thus generating two predictions for the next value and so on. For every ω-sequencew , only one
infinite run survives and its output is u = χ2(w). An initial prefix of a sample run is shown in

Figure 3-(b).

s0 s1

p/¬q

¬p/q

p

abort

¬p

abort

¬p/¬q

p/q

s0 s1

s0 s1

s0 s1

s0 s1

¬p/¬q ¬p/q

p

abort

p

abort

¬p

abort

¬p

abort

p/¬q p/q

p/¬q p/q

¬p/q

.

.

.

¬p/¬q

.

.

.

(a) (b)

Fig. 3. Behavior of temporal testers: (a) the tester for2 with input p and output q; (b) An initial fragment of

the behavior of this tester for an input sequence 0110 . . . producing the output 110 . . .

The output of the past temporal tester for p1 S p2 is again fully determined by the observed

past history. At positions where ¬p1 ∧ ¬p2 is observed, the property does not hold and the tester

outputs ¬q. Likewise, when p2 is observed, the output is trivially determined to be q. In a state

where p1 ∧ ¬p2 is observed, the formula p1 S p2 can be either satisfied or falsified, depending on

the previous observations, that is whether p1 has been continuously holding from the last time p2
was true. This situation is reflected by two states s0 and s1. In s0, no state p2 has yet been observed

in the period starting immediately before p1 started holding, and thus ¬q. In s1, state p2 has been
observed and p1 since, hence q.
The situation with p1 U p2, although symmetric to p1 S p2, is more involved because a priori,

due to the unbounded future horizon, one might need to generate and memorize 2
ω
predictions.

However, the semantics of until implies that at most two confirmable predictions may co-exist

simultaneously.

Lemma 3.2. Let u = χp1 U p2 (w). Then for every t such that (w, t) |= p1 ∧ ¬p2, u[t] = u[t + 1].

Proof. There are three possibilities: (1) The earliest t ′ > t + 1 such that (w, t ′) |= ¬p1 ∨ p2
satisfies (w, t ′) |= p2. In that case, the property is satisfied both at t and t + 1; (2) The same t ′

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

From Real-Time Logic to Timed Automata :9

satisfies (w, t ′) |= ¬p1 ∧ ¬p2 and the property is violated both at t and t + 1; (3) (w, t ′) |= p1 ∧ ¬p2
for every t ′ > t + 1 and the property is falsified from both time points. □

This fact is reflected by the tester of Figure 4-(b). The tester proceeds by guessing at every

t whether p1 U p2 will hold at time t + 1 by moving to s1 (will hold) or to s0 (will not hold).
Simultaneously it outputs the truth value ofp1 U p2 at time t in variableq when previous predictions
are not contradicted by the input, and aborts otherwise. At time instants where¬p1∧¬p2 is observed,
the value of the output is determined to be ¬q. In that case from state s1 the tester aborts because
the prediction is contradicted, and from state s0 it makes a new prediction by moving to s1 or s0.
Likewise, at time instants when p2 is observed the output is determined to be q, and the tester either
aborts (from s0) or makes a new prediction (from s1). In the situation where p1 ∧¬p2 holds, nothing
can be concluded from the input as to whether p1 U p2 holds, and the situation is handled according

to Lemma 3.2. The output is dictated by the previous prediction, that is, the tester outputs q from

state s1 and ¬q from state s2. To check a positive prediction, we must observe p2 from state s0, and
to check a negative prediction we must either observe ¬p1 ∧ ¬p2 from state s0, or p1 ∧ ¬p2 holding
forever in state s0. To prevent the tester from being in state s1 when p1 ∧¬p2 repeats forever we use
an edge Büchi condition [33], that includes all edges of the tester except for the self-loop labeled p1
in state s1 (see Figure 4-(b)). This ensures that this particular edge is consecutively taken at most a

finite number of times.

s0 s1

p2/q

¬p1 ∧ ¬p2/¬q

¬p2/¬q

p1 ∨ p2/q

s0 s1

p2/q

¬p1 ∧ ¬p2/¬q

¬p2/¬q p1/q

p2/q

(a) (b)

Fig. 4. Temporal testers for LTL: (a) operator S; (b) operator U. The acceptance condition is placed on edges:

a dashed edge is defined as unstable and can only be taken finitely many consecutive times [62]; this is

equivalent to the Büchi condition that at least one plain edge must be taken infinitely many times. Note that

acceptance here has nothing to do with the satisfaction of the property but whether the sequential function

u = χU (w) computed by the run is correct.

Testers for complex formulae are constructed by standard input/output composition as shown in

Section 2. With these four testers, and the trivial testers for the Boolean operators, one can indeed

build testers for arbitrary (past and future) LTL formulae.

4 SIGNALS AND THEIR TEMPORAL LOGIC
Extending the construction of temporal testers from discrete to dense time requires significant

adaptations of the semantic domain, the logic and the automata. The interaction between discrete

events and dense time may give rise to certain well-known anomalies that should be carefully

avoided.

Let the time domain T be the set of nonnegative real numbers. The Minkowski sum I ⊕ J over
T of two sets I , J is the set {r + s ∈ T | r ∈ I , s ∈ J }. In the special case of closed intervals

one has [a,b] ⊕ [c,d] = [a + c,b + d], and in the general case since x < a and y ≤ b imply

x + y < a + b, the Minkowski sum behaves according to Table 1. We also use the notation

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

:10 Thomas Ferrère, Oded Maler, Dejan Ničković, and Amir Pnueli

I ⊖ J = {r − s ∈ T | r ∈ I , s ∈ J } to denote the Minkowski difference within T. The notations t ⊕ I
and t ⊖ I are shorthands for {t} ⊕ I and {t} ⊖ I , respectively. For any bounded interval I we will
also write |I | for sup I − inf I .

4.1 Signals
A (multi-dimensional) Boolean signal is a function w : T → A. In this paper we focus on the

case where the alphabet A is a set Bn of Boolean vectors over n variables. A bounded signal is a
function w : T → A whose domain of definition is T ⊆ T is such that inf T = 0 and supT < +∞.

The length of a signalw is denoted |w | = supT . For a bounded domain T and a domains T ′
such

that T right-closed and T ′
left-open or vice-versa, the concatenation of signals w : T → A and

w ′
: T ′ → A is defined as the signal w · w ′

: T ⊕ T ′ → A such that (w · w ′)[t] = w[t] if t ∈ T ,
w ′[t − supT] otherwise.

Each signal can be decomposed into several point segments defined at time 0 and open segments

defined over intervals of the form (0, r) for some duration r > 0. A point-segment partition of T is
an alternating sequence of adjacent points and open intervals of the form

J = {t0}, (t0, t1), {t1}, (t1, t2), . . .

with t0 = 0 and ti < ti+1. A signal is well-behaving if it admits a compatible time partition. We

exclude so-called Zeno signals, and in general those that have infinitely many discontinuities over

a bounded time interval. With respect to such a given time partition, a well-behaving signalw can

be written as an alternating concatenation of point segments and open segments:

w = Ûσ0 · σ0 · Ûσ1 · σ1 · · ·

where Ûσi is the point segment at ti and σi is the open segment between times ti and ti+1. A time

partition is compatible with a signalw if the value ofw is uniform in each open interval (ti , ti+1).
Given a value a ∈ A and a duration r ∈ T we denote by ar the open signal segment defined over

T = (0, r) with constant value a. By slight abuse of notation, we also write a to denote the point

signal segment {0} → A with value a ∈ A. The decomposition of a well-behaving signalw relative

to a compatible time partition can be written

w = Ûw0 ·w
r0
0
· Ûw1 ·w

r1
1
· · ·

where each Ûwi ∈ A denotes the value of w at point ti and each wi ∈ A denotes the value of the

signal in the interval (ti , ti+1) of duration ri = ti+1 − ti . The coarsest time partition compatible with

a well-behaved signalw is obtained from the discontinuities ofw , and denoted Jw . When the signal

decomposition is relative to Jw , then for all i > 0 by definition we have σi−1 , Ûσi or Ûσi , σi .
Boolean signal components can be combined and separated using the standard pairing and

projection operators. Let wp : T → B, wq : T → B and wpq : T → B2 be signals. The pairing
function is defined as

wp ∥wq = wpq if ∀t ∈ T, wpq[t] = (wp [t],wq[t])

and its inverse operation, projection as:

wp = wpq |p wq = wpq |q

Table 1. Bounds in the Minkowski sum of two intervals.

⊕ [c (c
[a [a + c (a + c
(a (a + c (a + c

⊕ d) d]
b) b + d) b + d)
b] b + d) b + d]

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

From Real-Time Logic to Timed Automata :11

Signal transducers are functions that map signals to signals. They can be memoryless such as

the pointwise extensions of Boolean operations or more general ones realized by (timed) automata.

The definition of causal signal transducers is similar to the definition for sequence transducers, see

Definition 3.1.

Note that the number of point segments in wpq is at most the sum of the number of point

segments in wp and wq , and that the number of point segments in f (wp ,wq), for the pointwise

extension of a Boolean operator f is at most that ofwpq . Hence well-behaving signals are closed

under pairing, projection and Boolean operations.

4.2 MITL: Real-time Temporal Logic
4.2.1 Syntax and Semantics. We consider theMITL logic with both future and past operators.

The syntax of MITL is defined by the grammar

φ ::= p | ¬φ | φ1 ∨ φ2 | φ1 UI φ2 | φ1 SI φ2

where p belongs to a set P of propositions and I is an (unbounded or bounded) interval of T with
rational end-points.

5
As in LTL the basic MITL operators can be used to derive other standard

Boolean and temporal operators, in particular the time-constrained eventually, always, once, and
historically operators:

1I φ ≡ ⊤U I φ 0I φ ≡ ¬1I ¬φ

QI φ ≡ ⊤SI φ `I φ ≡ ¬QI ¬φ

where ⊤ is the constant true.
The semantics of anMITL formula φ with respect to a multi-dimensional Boolean signalw is

described via the satisfiability relation (w, t) |= φ, indicating that the signalw satisfies φ at time t ,
according to the following recursive definition.

(w, t) |= p iff t ∈ wp [t] = 1

(w, t) |= ¬φ iff (w, t) ̸|= φ

(w, t) |= φ1 ∨ φ2 iff (w, t) |= φ1 or (w, t) |= φ2

(w, t) |= φ1 UI φ2 iff ∃t ′ ∈ t ⊕ I , (w, t ′) |= φ2 and ∀t ′′ ∈ (t , t ′), (w, t ′′) |= φ1

(w, t) |= φ1 SI φ2 iff ∃t ′ ∈ t ⊖ I , (w, t ′) |= φ2 and ∀t ′′ ∈ (t ′, t), (w, t ′′) |= φ1

A formula φ is satisfied by w if (w, 0) |= φ. The definitions of UI and SI are strict as originally
proposed in [5], meaning that the moment t ′ when φ2 is true is required to be strictly after t , and
that φ1 need not hold at t . Untimed strict temporal operatorsU and S can be expressed using the

timed operators where the interval is (0,∞). We can define non-strict untimed temporal operators

U and S (which are the commonly-used interpretations of U and S in LTL) in terms of the strict

ones as follows:

φ1 U φ2 ≡ φ1 U(0,∞) φ2 φ1 S φ2 ≡ φ1 S(0,∞) φ2

φ1 U φ2 ≡ φ2 ∨ (φ1 ∧ (φ1 U φ2)) φ1 S φ2 ≡ φ2 ∨ (φ1 ∧ (φ1 S φ2)).

Note that U differs from U[0,∞), which is equivalent to φ2 ∨ φ1 U φ2.
Let us remark that the original logic MTL [48] for which MITL is a restriction also allows

“punctual” intervals of the form [a,a] in temporal modalities. To see why this is problematic in

dense time consider the operatorQ[a,a]. This operator, viewed as a signal transducer is a shift: its
output at t is the value of its input at time t − a. To realize this operator we would need a device

5
As a general remark concerning timed automata and logics, by suitable scaling every MITL formula and finite timed

automaton can be converted to one where a and b are integers.

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

:12 Thomas Ferrère, Oded Maler, Dejan Ničković, and Amir Pnueli

which can “memorize” the value of the input signal in a time window of length a. Without further

assumptions on the signal, such a memorization is beyond the capabilities of any automaton with a

finite number of states and clocks. The same applies to the future operator1[a,a], which must

“predict” the value of the input signal instead of memorizing it. However that if one knows in

advance a bound on the variability of the input, this operator can be realized by a finite timed

automaton. In particular, for formulae φ whose shortest true time segments always last more than a,
the formula1[a,a] φ can be replaced by1[0,a]0[0,a] φ. We will use similar facts in the following.

4.2.2 Expressing Events. As defined, MITL does not provide constructs that allow to reason

explicitly about instantaneous events, which can be viewed as taking place in singular intervals of

zero duration. A natural way to introduce them is to consider the instants when a signal changes

its value. The (strict) until and since operators allow us to define next and previously operators that

are suitable in our dense-time setting
6
as follows:

2φ ≡ φU φ �φ ≡ φ S φ.

Intuitively2φ (resp.�φ) means that φ holds immediately after now (resp. held just before now).

We then propose two unary operators, rise ↑ and fall ↓ that hold at the rising and falling edges

of a Boolean signal, respectively. Given that we allow singular points to be equal to their left

neighborhood, ↑ p may hold at t even if p[t] = 0 as illustrated in Figure 5. More precisely, ↑ φ holds

at t if φ is true in a right neighborhood of t and false in a left neighborhood of t . A similar definition

is taken for falling edges. These operators can be expressed in MITL as follows:

↑ φ ≡ (φ ∧�¬φ) ∨ (¬φ ∧2φ) ↓ φ ≡ (¬φ ∧�φ) ∨ (φ ∧2¬φ).

Note that this requires both strict-future and strict-past temporal operators.

t

↑ p1,↑ p2

p2

p1 . . .

. . .

. . .

Fig. 5. Two signals p1 and p2 that differ at time t where both ↑ p1 and ↑ p2 hold.

4.2.3 Rewrite Rules. In what follows we show that we need not build testers for all 12 temporal

operator variants (UI and SI , each with all types of intervals) and we can restrict ourselves to 4

simpler ones. We start with the following lemma, also proved in [30, 38], which shows that the

timed until can be expressed by a combination of untimed until and bounded eventually.
For any formulae φ andψ , we write φ ⇔ ψ when for all signalsw and times t ∈ T, (w, t) |= φ iff

(w, t) |= ψ .

6
These definitions are also compatible with the standard semantics of next and previously in a discrete time setting when

using strict until and since in that context.

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

From Real-Time Logic to Timed Automata :13

Lemma 4.1 (UI as combination of U and1J with sup J < ∞). For any rational constants
a,b, c such that 0 ≤ a < b < ∞ and 0 < c < ∞, we have

φ1 U(a,b) φ2 ⇔ φ1 U(a,∞) φ2 ∧1(a,b) φ2 φ1 U[a,b) φ2 ⇔ φ1 U[a,∞) φ2 ∧1[a,b) φ2

φ1 U(a,b] φ2 ⇔ φ1 U(a,∞) φ2 ∧1(a,b] φ2 φ1 U[a,b] φ2 ⇔ φ1 U[a,∞) φ2 ∧1[a,b] φ2

φ1 U(c,∞) φ2 ⇔0(0,c](φ1 ∧ φ1 U φ2) φ1 U[c,∞) φ2 ⇔0(0,c) φ1 ∧0(0,c](φ1 U φ2).

Proof. We prove the first and fifth equivalences, others are similar.

One direction of the first equivalence follows directly from the semantics of timed until, so we

consider only the other direction. When formula1(a,b) φ2 holds at time t in combination with

φ1 U(a,∞) φ2, then φ1 holds until some time t1 after t + a where φ2 holds, and in addition there

is t2 ∈ (t + a, t + b) where φ holds. If t1 ∈ (t + a, t + b) then t1 is a witness of φ1 U φ2, otherwise
t1 ≥ t + b and thus φ holds until t2 < t1 so that t2 is a witness of φ1 U φ2, and we are done.

Similarly, one direction of the fifth equivalence follows from the semantics U and0. In the

other direction, assume0(0,c](φ1 ∧ φ1 U φ2) holds at t . Then φ1 holds throughout (t , t + c] and
also holds until some t2 ∈ (t + c,∞) where φ2 holds, because in particular φ1 U φ2 holds at t + c .
Thus φ1 holds over (t , t2) for some t2 where φ2 holds, which means that φ1 U φ2 holds at t . □

For past operators we have:

Lemma 4.2 (SI as combination of S andQJ with sup J < ∞). For any rational constants
a,b, c such that 0 ≤ a < b < ∞ and 0 < c < ∞, we have

φ1 S(a,b) φ2 ⇔ φ1 S(a,∞) φ2 ∧Q(a,b) φ2 φ1 S[a,b) φ2 ⇔ φ1 S[a,∞) φ2 ∧Q[a,b) φ2

φ1 S(a,b] φ2 ⇔ φ1 S(a,∞) φ2 ∧Q(a,b] φ2 φ1 S[a,b] φ2 ⇔ φ1 S[a,∞) φ2 ∧Q[a,b] φ2

φ1 S(c,∞) φ2 ⇔`(0,c](φ1 ∧ φ1 S φ2) φ1 S[c,∞) φ2 ⇔`(0,c) φ1 ∧`(0,c](φ1 S φ2).

Proof. Symmetrical with Lemma 4.1. □

Consequently, the operatorsU, S,1I andQI , where I ranges over the interval types [a,b],
[a,b), (a,b] and (a,b), are sufficient to express any MITL property.

We can still reduce the number and complexity of tester types using the following equivalences

first mentioned by [38] in the setting of quantitative monadic logic (QTL). In that work, the set of

timed modalities is reduced to the mere1(0,1) andQ(0,1). This presumes that only integer timing

constants are allowed. In the present paper, we assume rational constants.

Lemma 4.3 (1J as combination of1K with inf K = 0). For any rational constants a,b, c such
that 0 < c ≤ b − a, we have

1(a+c,b+c) φ ⇔1(0,c)0(0,c)1(a,b) φ 1[a+c,b+c) φ ⇔1[0,c)0(0,c]1[a,b) φ

1(a+c,b+c] φ ⇔1(0,c]0[0,c)1(a,b] φ 1[a+c,b+c] φ ⇔1[0,c]0[0,c]1[a,b] φ.

Proof. We only show the first equivalence; other equivalences are similar.

(⇒) Assume that1(a+c,b+c) φ holds at time t , that is, φ holds at some time t ′ ∈ (t +a+c, t +b+c).

Then1(a,b) φ holds true over (t ′ − b, t ′ − a), and thus0(0,c)1(a,b) φ holds at time t ′ − b ∈

(t , t + c) which means that1(0,c)0(0,c)1(a,b) φ holds at time t .

(⇐) We show the contrapositive. Assume that φ is false over (t + a + c, t + b + c). Then1(a,b) is

false at time t + c , and0(0,c)1(a,b) φ is false over (t , t + c), so that the right-hand side of

the equivalence is false at time t .

□

For the past operators, we also have:

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

:14 Thomas Ferrère, Oded Maler, Dejan Ničković, and Amir Pnueli

Lemma 4.4 (QJ as combination ofQK with inf K = 0). For any rational constants a,b, c such
that 0 < c ≤ b − a, we have

Q(a+c,b+c) φ ⇔Q(0,c)`(0,c)Q(a,b) φ Q[a+c,b+c) φ ⇔Q[0,c)`(0,c]Q[a,b) φ

Q(a+c,b+c] φ ⇔Q(0,c]`[0,c)Q(a,b] φ Q[a+c,b+c] φ ⇔Q[0,c]`[0,c]Q[a,b] φ.

Proof. Symmetrical with Lemma 4.3. □

Finally, closed and semi-closed intervals can be eliminated using the equivalence

1(0,a] φ ⇔1(0,a) φ ∨ (21(0,a) φ ∧ ¬φU φ)

alongside1[0,a) φ ⇔ φ ∨1(0,a) and1[0,a] φ ⇔ φ ∨1(0,a] φ. Here, the role of ¬φU φ is to

rule out the case where φ start holding immediately after a but does not hold at a. Symmetrical

equivalences hold for past operators.

Putting all these results together, we obtain the main result of this section:

Proposition 4.5 (BasicMITL Operators). AnyMITL formula can be rewritten into an equivalent
formula, which only uses temporal operators U, S,1(0,a),Q(0,a) for rational constants a > 0.

5 TIMED AUTOMATA
We use a variant of timed automata [3], which differ from their classical definition in several

ways. Our automata are signal transducers that input and output multi-dimensional dense-time
Boolean signals. The input and output valuations are associated with both automata locations and

transitions. This allows a clean synchronization of the runs of the automaton (and their induced

point-segment time partitions) with input and output signals.

Let X = {x1, . . . ,xn} be a set of clock variables, each ranging over the nonnegative reals T.
A configuration of a timed automaton is a pair of the form (s,v) where s is the control state (or
location) of the automaton and v the clock valuation. For a clock valuation v = (v1, . . . ,vn) ∈ T

n
,

v + t is the valuation (v ′
1
, . . . ,v ′

n) such that v ′
i = vi + t for all i = 1 . . .n. It represents the values

of clocks after spending t time in a location starting from valuation v . Given Z ⊆ X , v[Z] is the
valuation (v ′

1
, . . . ,v ′

n) such that v ′
i = 0 if xi ∈ Z , else v ′

i = vi for all i = 1 . . .n. It represents
the values of clocks after reseting those in Z to 0. A clock constraint is a Boolean combination of

conditions of the form x ≤ c and x ≥ c for some rational constant c and clock variable x ∈ X .

Definition 5.1 (Timed Transducer). A timed transducer is a tuple ⟨S, s, P ,Q,X , ι,∆, λ,γ ,F ⟩, where

• S is a finite set of discrete locations and s < S is the initial location;
• P and Q are finite sets of input and output variables;
• X is a finite set of clock variables;
• ι is a mapping from states in S to clock constraints over X also called invariants;
• ∆ is the transition relation consisting of elements of the form δ = (s,д,Z , s ′), where
– s ∈ S ∪ {s} and s ′ ∈ S are locations,

– the guard д is a clock constraint over X ,

– the reset instruction Z is a subset of X ;

• The input labeling λ is a function from S ∪ ∆ to Boolean combinations over P ;
• The output labeling γ is a function from S ∪ ∆ to Boolean combinations over Q ;
• F ⊆ 2

S∪∆
is a generalized Büchi acceptance condition.

Intuitively, a run of a timed transducer consists of an alternation of discrete steps, where a

transition whose guard is satisfied is taken, and time steps, where the transducer stays in a location

s for some duration, provided that the invariant ι(s) holds. We also need to establish a relation

between a run of the transducer, an input signalw which induces it and an output signal u which is

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

From Real-Time Logic to Timed Automata :15

generated during the run. First, we associate with every location and transition a Boolean constraint

λ on the valuations of input variables. During a time step of duration r in a location s , the transducer
reads an open segment σ ofw of length r , whose values are required to satisfy λ(s). While taking a

transition δ , the transducer reads a point segment Ûσ in the input signalw , whose value must satisfy

λ(δ). Likewise, we associate with every location and transition a Boolean constraint γ over the

output variables of the transducer: when in location s for duration r , the transducer writes an open

segment ρ of length r to u according to γ (s), and while taking a transition δ it writes Ûρ satisfying

γ (δ) to u.
Formally, a step of a timed transducer is one of the following:

• A time step: (s,v)
σ /ρ
−−−→ (s,v ′), for some duration r = |σ | = |ρ | such thatv ′ = v+r , σ [t] |= λ(s),

ρ |= γ (s), and v + t |= ι(s) for all t ∈ (0, r);

• A discrete step: (s,v)
Ûσ / Ûρ
−−−→ (s ′,v ′), for some transition δ = (s,д,Z , s ′) ∈ ∆ such thatv ′ = v[Z],

Ûσ |= λ(δ), Ûρ |= γ (δ), and v |= д.

A run of the transducer starting from the initial configuration (s,v) for some arbitrary v over an

input signalw is a finite or infinite sequence of alternating discrete and time steps of the form

(s,v)
Ûσ0/ Ûρ0
−−−−→ (s0,v0)

σ0/ρ0
−−−−→ (s0,v0 + r0)

Ûσ1/ Ûρ1
−−−−→ (s1,v1)

σ1/ρ1
−−−−→ (s1,v1 + r1) . . .

such thatw = Ûσ0 · σ0 · Ûσ1 · σ1 · · · , inducing the output signal u = Ûρ0 · ρ0 · Ûρ1 · ρ1 · · · . It is accepting
when it satisfies the generalized Büchi acceptance condition as follows: for all F ∈ F , the set of

absolute time instants at which the run visits a state or edge in F is unbounded. We say that T is

functional when for everyw there exists a unique u such that T has a run overw inducing u. For
a functional transducer T , we write ⟦T ⟧ the sequential function realized by T , i.e. the mapping

from input to output signals ⟦T ⟧ : w 7→ u for all u,w such that T has a run overw inducing u.

Definition 5.2 (Product). Let ⟨Sk , sk , Pk ,Qk ,Xk , ιk ,∆k , λk ,γk ,Fk ⟩ fork = 1, 2 be timed transducers.

Their synchronous product is the timed transducer ⟨S, s, P ,Q,X , ι,∆, λ,γ ,F ⟩ such that

• S = S1 × S2;
• s = (s

1
, s

2
);

• P = P1 ∪ P2;
• Q = Q1 ∪Q2;

• X = X1 ∪ X2;

• ι(s1, s2) = ι1(s1) ∧ ι2(s2);
• The transition relation ∆ consists of:

– simultaneous transitions ((s1, s2),д,Z , (s
′
1
, s ′

2
)), where (s1,д1,Z1, s

′
1
) ∈ ∆1, (s2,д2,Z2, s

′
2
) ∈

∆2, д = д1 ∧ д2 and Z = Z1 ∪ Z2,

– left-sided transitions: ((s1, s2),д ∧ ι2(s2),Z , (s
′
1
, s2)), where (s1,д,Z , s

′
1
) ∈ ∆1;

– right-sided transitions: ((s1, s2), ι1(s1) ∧ д,Z , (s1, s
′
2
)), where (s2,д,Z , s

′
2
) ∈ ∆2;

• The input labeling consists of:

– state labels: λ(s1, s2) = λ1(s1) ∧ λ2(s2),
– transition labels: we let λ((s1, s2),д,Z , (s

′
1
, s ′

2
)) = λ1(s1,д1,Z1, s

′
1
) ∧ λ2(s2,д2,Z2, s

′
2
) when

simultaneous, λ((s1, s2),д ∧ ι2(s2),Z , (s
′
1
, s2)) = λ1(s1,д,Z , s

′
1
) ∧ λ2(s2) when left-sided, and

λ((s1, s2), ι1(s1) ∧ д,Z , (s1, s
′
2
)) = λ1(s1) ∧ λ2(s2,д,Z , s

′
2
) when right-sided;

• The output labeling γ is constructed similarly as λ;
• F has Büchi conditions G for all F ∈ Fi , i = 1, 2 constructed as follows:

– for all si ∈ Qi ∩ F , states of the form (s1, s2) are in G,
– for all δ ∈ ∆i ∩ F , simultaneous and one-sided transitions built from δ are in G.

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

:16 Thomas Ferrère, Oded Maler, Dejan Ničković, and Amir Pnueli

Let T be a timed transducer with input variables P and output variables Q . The projection

T |R of a timed transducer T on a subset of variables R ⊂ P ∪ Q consists in removing variables

r ∈ (P ∪ Q) \ R from state and transition labels α by replacing them with ∃r .α , or equivalently
α[⊤/r] ∨ α[⊥/r]. Let then T1 and T2 be two timed transducers, such that Ti has input variables Pi
and output variables Qi for i = 1, 2. We say that T1 and T2 are sequential-composable if P1 ∩Q2 = ∅

and Q1 = P2. In that case their sequential composition, denoted T1 ;T2, is defined as the projection

onto P1 ∪Q2 of the synchronous product of T1 by T2. We say that T1 and T2 are parallel-composable
when (P1 ∪Q1) ∩Q2 = ∅ and (P2 ∪Q2) ∩Q1 = ∅. In that case their parallel composition, denoted
T1∥T2, is simply the synchronous product of T1 by T2.

Proposition 5.3 (Composition of Transducers). The following holds for all functional timed
transducers T1 and T2.

• If T1 and T2 are parallel-composable, then ⟦T1∥T2⟧(w) = ⟦T1⟧(w |P1)∥⟦T2⟧(w |P2) for any signal
w over P1 ∪ P2.

• If T1 and T2 are sequential-composable, then ⟦T1 ;T2⟧(w) = ⟦T2⟧(⟦T1⟧(w)) for any signalw over
P1.

6 FROMMITL TO TIMED TRANSDUCERS
In this section, we propose a translation from MITL formulae to temporal testers, which are

timed transducers computing the characteristic sequential function of the formula. We proceed

to construct temporal testers for every operator used in the normal form of Section 4.2.3. The

temporal tester T associated to a unary (resp. binary) operator f is a transducer with input variable

p (resp. p1 and p2) and output variable q realizing the sequential function captured by0(q ↔ f (p))
(resp.0(q ↔ f (p1,p2)). We then show that such simple testers can be composed into testers for

arbitraryMITL formulae, enabling us to recover known results regardingMITL satisfiability and

model checking.

6.1 Temporal Testers for S andU

6.1.1 Continuity and Expansion Rules. Before presenting our construction of testers for φ1 S φ2
and φ1 U φ2 formulae, we study the left- and right-continuity of characteristic signals of since and
until formulae, and give an inductive characterization of the transduction function associated to

these operators.

Definition 6.1 (Continuity). A temporal formula φ is said to be

(1) left-continuous when for all signalsw and times t , (w, t) |= φ implies that either t = 0 or there

exists t ′ < t such that for all t ′′ ∈ (t ′, t), (w, t ′′) |= φ;
(2) right-continuous when for all signalsw and times t , (w, t) |= φ implies that there exists t ′ > t

such that for all t ′′ ∈ (t , t ′), (w, t ′′) |= φ.

Lemma 6.2 (Continuity of Since and Until). For every formulae φ1 and φ2, we have that
(1) φ1 S φ2 is left-continuous;
(2) φ1 U φ2 is right-continuous.

Proof. The property does not depend on the structure of φ1 and φ2 but only their truth value,

hence we can assume without loss of generality atomic formulae φ1 ≡ p1 and φ2 ≡ p2.
We first show the left-continuity of since. Let w be an arbitrary input signal and u = Ûu0 · u

r0
0
·

Ûu1 · u
r1
1
· · · = χp1 S p2 (w). We show that for any i ≥ 1, Ûui = ui−1. There exist t ′ < ti such that

p2 is satisfied at t ′ and that p1 holds continuously throughout the interval (t ′, ti). It follows that
(w, t) |= p1 S p2 everywhere in (t ′, ti) and, consequently ui−1 = 1 = Ûui . If Ûui = 0, there are two

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

From Real-Time Logic to Timed Automata :17

possibilities: either p2 was never true at any t
′ ∈ [0, ti), and hence u was false in the whole interval

(0, ti); or for any t
′′ ∈ [0, ti) where p2 was true, there is t

′ ∈ (t ′′, ti) where p1 was false, implying

that p1 S p2 was not satisfied at (t ′, ti) and ui−1 = 0 = Ûui .
We then show the right-continuity of until. Letw be an arbitrary input signal and u = Ûu0 · u

r0
0
·

Ûu1 ·u
r1
1
· · · = χp1 U p2 (w). We show that for any i ≥ 0, Ûui = ui . Assume first that Ûui = 1. There exists

t ′ > ti such that p2 is satisfied at t ′ and that p1 holds continuously throughout the interval (ti , t
′).

It follows that (w, t) |= p1 U p2 everywhere in (ti , t
′) and, consequently ui = 1 = Ûui . If Ûui = 0, there

are two possibilities: either p2 never becomes true at any t ′ > ti and hence u is false in the whole

open interval (t ,∞); or for any t ′′ > ti where p2 is true there is t
′ ∈ (ti , t

′′) where p1 does not hold
which implies that p1 U p2 is not satisfied at (ti , t

′) and ui = 0 = Ûui . □

Building up on the observation about left- and right-continuity of since and until, we identify a

set of inductive relations that characterize the semantics of these two operators:

Lemma 6.3 (Expansion rules for Since). Let w = Ûw0 · w
r0
0
· Ûw1 · w

r1
1
· · · and u = χp1 S p2 (w).

Then u is of the form Ûu0 ·u
r0
0
· Ûu1 ·u

r1
1
· · · and its value can be inferred from the initial condition Ûu0 = 0,

the left-continuity Ûui+1 = ui , and the following rules valid for all i ≥ 0:
(1) ifwi |= ¬p1, then ui = 0;
(2) ifwi |= p1 ∧ p2, then ui = 1;
(3) ifwi |= p1 ∧ ¬p2, there are three possibilities:
(a) if Ûwi |= ¬p1 ∧ ¬p2, then ui = 0

(b) if Ûwi |= p2, then ui = 1

(c) if Ûwi |= p1 ∧ ¬p2, then ui = Ûui .

Proof. The value of u at a point segment Ûui is given as follows. For i = 0, we have Ûu0 = 0

following the semantics of p1 S p2 evaluated at time 0, whose satisfaction requires the existence

of t ′ < 0 which is a contradiction. For i ≥ 1, we have Ûui = ui−1 by left-continuity of since. The

value of u in the ith open segment is determined with respect to the values of p1 and p2 in the same

segment wi and at the preceding singular point Ûwi . For any t ∈ (ti , ti+1) in the ith segment, we

have:

Case 1. For any t ′ < t which is in (ti , ti+1), p1 does not hold, by definition, throughout (t ′, t),
hence (w, t) ̸|= p1 S p2, that is ui = 0;

Case 2. There exists t ′ < t which is also in (ti , ti+1), where, by definition, p2 holds at t
′
and p1

holds continuously throughout (t ′, t). Hence (w, t) |= p1 S p2 for all such t and ui = 1;

Case 3a. Proposition p1 is false at ti and p2 does not hold anywhere in the interval (ti , t), which
implies that p1 S p2 is violated throughout (ti , ti+1) and ui = 0;

Case 3b. Proposition p2 is true at ti and p1 is continuously true during (ti , t), implying that

p1 S p2 is satisfied at (ti , ti+1) and ui = 1;

Case 3c. Proposition p1 holds and p2 remains false throughout [ti , t). Hence, p1 S p2 holds at t
if and only if there exists t ′ ∈ [0, ti) where p2 holds, and p1 remains true during (t ′, ti), that is
p1 S p2 holds at ti . This implies that p1 S p2 is satisfied at (ti , ti+1) if and only if it is satisfied

at ti and ui = Ûui .

For any combination of valuations of p1 and p2 at the ith singular point and the adjacent open

segment, one of the above rules applies. □

Lemma 6.4 (Expansion rules for Until). Let w = Ûw0 ·w
r0
0
· Ûw1 ·w

r1
1
· · · and u = χp1 U p2 (w).

Then u is of the form Ûu0 ·u
r0
0
· Ûu1 ·u

r1
1
· · · and its value can be inferred from the right-continuity Ûui = ui

and from the following rules valid for all i ≥ 0:
(1) ifwi |= ¬p1, then ui = 0,

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

:18 Thomas Ferrère, Oded Maler, Dejan Ničković, and Amir Pnueli

(2) ifwi |= p1 ∧ p2, then ui = 1

(3) ifwi |= p1 ∧ ¬p2, then eitherwi is the last segment inw and ui = 0, or:
(a) if Ûwi+1 |= ¬p1 ∧ ¬p2, then ui = 0

(b) if Ûwi+1 |= p2, then ui = 1

(c) if Ûwi+1 |= p1 ∧ ¬p2, then ui = Ûui .

Proof. The value of u at the ith point segment is Ûui = ui by right-continuity of until. The value
of u in the ith open segment is determined with respect to the values of p1 and p2 in that same

segment wi and the next singular point Ûwi+1. It is not hard to see that the above rules cover all

possible combinations of values for p1 and p2 in pairs wi and Ûwi+1 of open segments and their

adjacent singular points. For any t ∈ (ti , ti+1) in the ith segment, we have

Case 1. For any t ′ > t in (ti , ti+1), and, by definition, p1 is violated throughout (t , t ′), hence
(w, t) ̸|= p1 U p2 and ui = 0;

Case 2. There exists t ′ > t in (ti , ti+1) such that, by definition, p2 holds at t
′
and p1 holds

continuously throughout (t , t ′). Hence (w, t) |= p1 U p2 for all such t and ui = 1;

Case 3a. By definition, p1 is false at ti+1 and p2 does not hold anywhere in the interval (t , ti+1),
which implies that p1 U p2 is violated throughout (ti , ti+1) and ui = 0;

Case 3b. Proposition p2 is true at ti+1 and p1 continuously holds during (t , ti+1), implying that

p1 U p2 is satisfied at (ti , ti+1) and ui = 1;

Case 3c. Proposition p1 holds and p2 remains false throughout (t , ti+1]. Hence, p1 U p2 holds
at t if and only if there exists t ′ > ti+1 where p2 holds, and p1 remains true during (ti+1, t

′),

that is p1 U p2 holds at ti+1. This implies that p1 U p2 is satisfied at (ti , ti+1) if and only if it is

satisfied at ti+1 and ui = Ûui+1.

The only remaining case whenwi |= p1 ∧ ¬p2 is the special case wherewi is the last segment in

the signalw , that is, segmentwi is defined over the interval (ti ,∞). In that case there is no t ′ > ti
where q is true, and ui = 0. □

6.1.2 Temporal Tester for S. We are now ready to construct the temporal tester TS , producing a

signal q associated to the formula p1 S p2. We let TS = ⟨S, s, P ,Q,X , ι,∆, λ,γ ,F ⟩, where

• S = {s0, . . . , s3},
• P = {p1,p2} and Q = {q},
• X = ∅,

• ∆ = {δ1, . . . ,δ20},
• F = ∅,

and ι, λ, γ , and δ1, . . . ,δ20 are given in Table 2 (location part) and Table 3 (edge part).

The temporal tester TS , producing a signal q for the formula p1 S p2, is depicted in Figure 6 and

works as follows. Following Lemma 6.2, the output at time 0 (in initial transitions δ1 to δ3) is ¬q,
irrespective of the initial input values. Lemma 6.2 also require that the output at any singular point

agrees with the output during the preceding open segment. The temporal tester TS realizes this

requirement by ensuring that for all transitions δ = (s,⊤, ∅, s ′) ∈ ∆ coming from a non-initial state

s , s , we have γ (δ) = γ (s). When reading an open input segment wi of w , the tester remains in

one of its locations (s0 to s3) and generates the corresponding output segments ui , according to the

semantic rules from Lemma 6.3. In location s0, the tester reads an open input segment that satisfies

p1 ∧ p2 and outputs q, regardless of the preceding singular point input values. Similarly, in location

s2, the tester reads an open input segment that satisfies ¬p1 and outputs ¬q, independent of the
preceding singular point value. When the tester reads an open input segment that models p1 ∧ ¬p2,
the tester can be either in location s1 with output q, or in location s3 with output ¬q, depending on

the preceding input history. We can distinguish three possibilities:

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

From Real-Time Logic to Timed Automata :19

Table 2. States of TS , their input and output labels, and invariants.

i si λ(si) γ (si) ι(si)

0 s0 p1 ∧ p2 q ⊤

1 s1 p1 ∧ ¬p2 q ⊤

2 s2 ¬p1 ¬q ⊤

3 s3 p1 ∧ ¬p2 ¬q ⊤

Table 3. Edges of TS and their input and output labels.

i δi λ(δi) γ (δi) i δi λ(δi) γ (δi)

1 (s, ⊤, ∅, s0) ⊤ ¬q 11 (s1, ⊤, ∅, s2) ⊤ q
2 (s, ⊤, ∅, s1) p2 ¬q 12 (s1, ⊤, ∅, s3) ¬p1 ∧ ¬p2 q
3 (s, ⊤, ∅, s2) ⊤ ¬q 13 (s2, ⊤, ∅, s0) ⊤ ¬q
4 (s, ⊤, ∅, s3) ¬p2 ¬q 14 (s2, ⊤, ∅, s1) p2 ¬q
5 (s0, ⊤, ∅, s0) ¬p1 ∨ ¬p2 q 15 (s2, ⊤, ∅, s2) p1 ¬q
6 (s0, ⊤, ∅, s1) p1 ∨ p2 q 16 (s2, ⊤, ∅, s3) ¬p2 ¬q
7 (s0, ⊤, ∅, s2) ⊤ q 17 (s3, ⊤, ∅, s0) ⊤ ¬q
8 (s0, ⊤, ∅, s3) ¬p1 ∧ ¬p2 q 18 (s3, ⊤, ∅, s1) p2 ¬q
9 (s1, ⊤, ∅, s0) ⊤ q 19 (s3, ⊤, ∅, s2) ⊤ ¬q
10 (s1, ⊤, ∅, s1) p2 q 20 (s3, ⊤, ∅, s3) ¬p1 ∧ ¬p2 ¬q

s0

p1 ∧ p2
/q

s1

p1 ∧ ¬p2
/q

s2

¬p1
/¬q

s3

p1 ∧ ¬p2
/¬q

⊤/q

⊤/¬q

p2/¬q

⊤/q

¬p1 ∧ ¬p2/q

p2/¬q

p1 ∨ p2
/q ¬p2/¬q⊤/¬q⊤/q

¬p1 ∨ ¬p2/q p1/¬q

p2/q ¬p1 ∧ ¬p2/¬q

⊤/¬q

p2/¬q ¬p2/¬q

⊤/¬q

¬p1 ∧ ¬p2
/q

⊤/¬q

Fig. 6. Temporal tester TS .

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

:20 Thomas Ferrère, Oded Maler, Dejan Ničković, and Amir Pnueli

• The preceding singular input point satisfies ¬p1 ∧ ¬p2 and the tester is in location s3 with
output ¬q (transitions δ4, δ8, δ16 and δ20);

• The preceding singular input point satisfies p2 and the tester is in location s1 with output q
(transitions δ6, δ10, δ14 and δ18);

• The preceding singular point satisfies p1 ∧ ¬p2, the tester is in the location (s1 or s3) whose
output agrees with the output at that singular point (transitions δ5 and δ16).

6.1.3 Temporal Tester forU. We are now ready to construct the temporal testerTU with output

variable q and implementing the formula p1 U p2. We let Tq = ⟨S, s, P ,Q,X , ι,∆, λ,γ ,F ⟩ where

• S = {s0, . . . , s3},
• P = {p1,p2} and Q = {q},
• X = ∅,

• ∆ = {δ1, . . . ,δ20},
• F = {F1} where F1 = (S ∪ ∆) \ {s1},

and ι, λ, γ , and δ1, . . . ,δ20 are given in Table 4 and Table 5. The temporal tester TU for operator

until with input p1,p2 and output q is depicted in Figure 7. It is symmetric to the tester for since
and can be obtained from its past counterpart by inverting the transition arrows. Unlike its past

counterpart, which reads inputs, and determines the output according to the observed history, the

tester for until predicts the output nondeterministically and has to either confirm or abort output

predictions by future inputs.

Lemma 6.2 requires that all singular points have an output that agrees with the subsequent open

output segment. The tester realizes this fact by letting the output on transitions be identical to the

output of the target location.

When reading an open input segment wri
i of w , the tester remains in one of its locations (s0

to s3) and generates the corresponding output segment urii according to the semantic rules from

Lemma 6.4.

Table 4. States of TU , their input and output labels, and invariant.

i si λ(si) γ (si) ι(si)

0 s0 p1 ∧ p2 q ⊤

1 s1 p1 ∧ ¬p2 q ⊤

2 s2 ¬p1 ¬q ⊤

3 s3 p1 ∧ ¬p2 ¬q ⊤

Table 5. Edges of TU and their input and output labels.

i δi λ(δi) γ (δi) i δi λ(δi) γ (δi)

1 (s, ⊤, ∅, s0) ⊤ q 11 (s1, ⊤, ∅, s2) p2 ¬q
2 (s, ⊤, ∅, s1) ⊤ q 12 (s1, ⊤, ∅, s3) p2 ¬q
3 (s, ⊤, ∅, s2) ⊤ ¬q 13 (s2, ⊤, ∅, s0) ⊤ q
4 (s, ⊤, ∅, s3) ⊤ ¬q 14 (s2, ⊤, ∅, s1) ⊤ q
5 (s0, ⊤, ∅, s0) ¬p1 ∨ ¬p2 q 15 (s2, ⊤, ∅, s2) p1 ¬q
6 (s0, ⊤, ∅, s1) ⊤ q 16 (s2, ⊤, ∅, s3) ⊤ ¬q
7 (s0, ⊤, ∅, s2) ⊤ ¬q 17 (s3, ⊤, ∅, s0) ¬p1 ∧ ¬p2 q
8 (s0, ⊤, ∅, s3) ⊤ ¬q 18 (s3, ⊤, ∅, s1) ¬p1 ∧ ¬p2 q
9 (s1, ⊤, ∅, s0) p1 ∨ p2 q 19 (s3, ⊤, ∅, s2) ¬p2 ¬q
10 (s1, ⊤, ∅, s1) p2 q 20 (s3, ⊤, ∅, s3) ¬p1 ∧ ¬p2 ¬q

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

From Real-Time Logic to Timed Automata :21

s0

p1 ∧ p2
/q

s1

p1 ∧ ¬p2
/q

s2

¬p1
/¬q

s3

p1 ∧ ¬p2
/¬q

⊤/q

⊤/¬q

p2/¬q
⊤/q

¬p1 ∧ ¬p2/q

p2/¬q

p1 ∨ p2
/q ¬p2/¬q⊤/¬q⊤/q

¬p1 ∨ ¬p2/q p1/¬q

p2/q ¬p1 ∧ ¬p2/¬q

⊤/q

⊤/q ⊤/¬q

⊤/¬q

¬p1 ∧ ¬p2
/q

⊤/¬q

Fig. 7. Temporal tester TU . Dashed line indicates that state s1 does not belong to Büchi condition.

In locations s0 and s2, the tester, which is a transducer for formula p1 U p2, behaves the same

way as its past counterpart, and outputs q and ¬q, respectively, regardless of the input values in
the next adjacent singular point.

When the tester reads an open input segment that satisfies p1 ∧ ¬p2, the tester can be either in

location s1 with output q, or in location s3 with output ¬q, depending on the prediction that the

tester made. The prediction is nondeterministic and results in two parallel runs of the tester, one of

which will be aborted later. We can distinguish three possibilities:

• The tester predicts the output q (location s1) that is followed by a subsequent singular point

that satisfies p2 (transitions δ9, δ10, δ11 and δ12);
• The tester predicts the output ¬q (location s3) that is followed by a subsequent singular point

that satisfies ¬(p1 ∨ p2) (transitions δ17, δ18, δ19 and δ20);
• The tester predicts the output to be either q or ¬q (location s1 or s3 and the following singular
point satisfies p1 ∧ ¬p2. In this case, neither prediction can be immediately confirmed or

aborted, and more input has to be read to reject the wrong prediction. However, the prediction

made during the open segment that satisfies p1 ∧¬p2 has to agree with the output prediction

at the adjacent p1 ∧ ¬p2 singular point, so the tester has to take the transition δ9 from s1, and
the transition δ19 from s3.

The only input signals that lead to two infinite runs are those that end with an infinite open

segment that satisfies p1 ∧ ¬p2 and these signals violate the p1 U p2 formula. To abort the wrong

run that predicts q all along the segment, we forbid the tester to remain forever in s1 without taking
any transition, with F = (S ∪ ∆) \ {s1}.

We have shown transducers implementing the untimed since and until operators of MITL. The

developments in this section demonstrate:

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

:22 Thomas Ferrère, Oded Maler, Dejan Ničković, and Amir Pnueli

Proposition 6.5 (Correctness of TS and TU). For any signalw over variables p1, p2 and q,
• w |=0(q ↔ (p1 S p2)) iff ⟦TS⟧(wp1p2) = wq ;
• w |=0(q ↔ (p1 U p2)) iff ⟦TU⟧(wp1p2) = wq .

6.2 Temporal Testers forQ(0,a) and1(0,a)

The temporal tester TQ
(0,a)

computing signal q representing the truth value of formulaQ(0,a) p

has to monitor the truth value of p and memorize with clock variables times where this value has

changed. According to the memorized input history, the tester generates the correct output. The

temporal tester T1
(0,a)

computing q ↔1(0,a) p is similar to the one ofQ(0,a), but unlike its past

counterpart, it generates the output nondeterministically and later checks whether the actual input

confirms such predictions, aborting the wrong ones.

6.2.1 Temporal Tester forQ(0,a). Consider the formulaψ ≡Q(0,a) φ and letw be an arbitrary

input signal. When φ holds in w for some interval I with endpoints ti and tj , then ψ is satisfied

throughout the open interval I ⊕ (0,a) = (ti , tj +a), regardless of the shape of I among (ti , tj), [ti , tj),
(ti , tj] or [ti , tj]. In other words, the satisfaction ofψ within the interval (ti , tj + a) does not depend
on the satisfaction of φ at ti and tj .

Let I = (ti , tj) be an open segments where φ continuously holds. Following the fact that for every

t ∈ I , there exists t ′ < t such that t ′ ∈ I , it follows thatψ is also satisfied throughout I .
Let I be a segment with endpoints ti and tj such that φ is violated throughout I . The effect of the

segments where φ is violated on the output depends on the actual duration of the “false” segment:

(1) if tj − ti < a, the false segment is too short and does not affect the output of the tester, i.e.

Q(0,a) φ is satisfied throughout I . In fact, for all t ∈ I , there exists t ′ ∈ t ⊖ (0,a) such that

t ′ ≤ ti and where φ holds, henceψ remains satisfied throughout I .
(2) if tj − ti = a,ψ remains satisfied throughout (ti , tj), but is violated at tj .
(3) if tj − ti > a, thenψ remains satisfied during (ti , ti + a), and violated throughout [ti + a, tj].

These three cases are depicted in Figure 8.

We now construct the temporal tester TQ
(0,a)

, a transducer realizing the relation q ↔Q(0,a) p,

following the above observations. Let TQ
(0,a)
= ⟨Q, s0, P ,Q,X , ι,∆, λ,γ ,F ⟩, where

• S = {s0, s1, s2},
• P = {p} and Q = {q},
• X = {x},
• ∆ = {δ1, . . . ,δ12},
• F = ∅,

φ

ψ

ti tj ti + a

. . .

. . .

φ

ψ

ti tj
ti + a

. . .

. . .

φ

ψ

ti ti + a tj

. . .

. . .

(a) (b) (c)

Fig. 8. Satisfaction of ψ ≡ Q(0,a) φ over time for three cases where φ is violated between ti and tj : (a)

tj − ti < a; (b) tj − ti = a; (c) tj − ti > a.

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

From Real-Time Logic to Timed Automata :23

Table 6. States of TQ
(0,a)

, their input and output labels, and invariant.

i si λ(si) γ (si) ι(si)

0 s0 p q ⊤

1 s1 ¬p q x < a
2 s2 ¬p ¬q ⊤

Table 7. Edges of TQ
(0,a)

and their input and output labels.

i δi λ(δi) γ (δi) i δi λ(δi) γ (δi)

1 (s, ⊤, ∅, s0) ⊤ ¬q 7 (s1, x = a, ∅, s0) ⊤ ¬q
2 (s, ⊤, {x }, s1) p ¬q 8 (s1, x < a, {x }, s1) p q
3 (s, ⊤, ∅, s2) ¬p ¬q 9 (s1, x = a, {x }, s1) p ¬q
4 (s0, ⊤, ∅, s0) ¬p q 10 (s1, x = a, ∅, s2) ¬p ¬q
5 (s0, ⊤, {x }, s1) ⊤ q 11 (s2, ⊤, ∅, s0) ⊤ ¬q
6 (s1, x < a, ∅, s0) ⊤ q 12 (s2, ⊤, {x }, s1) p ¬q

s0

p/q

s1

¬p/q
x < a

s2

¬p/¬q

¬p/¬q
x = a

p/¬q
x := 0

⊤/¬q
x = a

⊤/q
x := 0

¬p/q

p/q
x < a
x := 0

p/¬q
x = a
x := 0

⊤/¬q

p/¬q
x := 0

¬p/¬q

⊤/q
x < a

⊤/¬q

Fig. 9. Temporal tester TQ
(0,a)

.

and ι, λ, γ , and δ1, . . . ,δ12 are given in Table 6 and Table 7.

The temporal tester TQ
(0,a)

with input p and output q ↔ Q(0,a) p is depicted in Figure 9

and works as follows. The tester observes the input behaviorw and moves through its locations,

generating the correct output. At time t = 0, the output trivially satisfies ¬q. In location s0, the
tester reads an open input segment that satisfies p, hence it generates the output where q holds

true. Singular points violating p are ignored, a fact which is reflected by transition δ4. When the

tester observes an open input segment switching to p being violated, it moves from s0 to s1 and

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

:24 Thomas Ferrère, Oded Maler, Dejan Ničković, and Amir Pnueli

φ

ψ

tj − a ti tj

. . .

. . .

φ

ψ

ti
tj − a

tj

. . .

. . .

φ

ψ

ti tj − a tj

. . .

. . .

(a) (b) (c)

Fig. 10. Satisfaction of ψ ≡1(0,a) φ over time for three cases where φ is violated between ti and tj : (a)

tj − ti < a; (b) tj − ti = a; (c) tj − ti > a.

resets clock x (transition δ5).
7
The clock x measures the distance from the last point in time when

the input satisfied p. As long as the value of the clock is smaller than a, the tester outputs q as

the property is satisfied. From location s1, there are three possible continuations according to the

relation between a and the duration of the segment that violates p:

(1) Proposition p becomes true before x reaches a, meaning that the segment that violates p was

strictly smaller than a (transitions δ6 and δ8). Such “short” periods where p is violated are

ignored by the tester, and the output continuously satisfies q.
(2) Proposition p becomes true when x = a. This situation is realized by transitions δ7 and δ9,

resulting in a singular point where the output violates q.
(3) Proposition p is still violated when x reaches a and the tester moves to s2. The output

generated in s2 violates q because the tester is in location s2 if the last input that satisfied p
happened more than a time ago. When the tester is in s2 and observes an input that satisfies

p, an appropriate transition is taken. In the case where the tester observes a singular point

satisfying p, transition δ12 is taken, and transition δ11 is taken otherwise.

6.2.2 Temporal Tester for1(0,a). Consider the temporal formula ψ ≡ 1(0,a) φ and let w be

an arbitrary input signal. When φ holds inw for some interval I with endpoints ti and tj , thenψ
is satisfied throughout the open interval I ⊖ (0,a) = (ti − a, tj). Symetrically to the case of past

operators, this is regardless of the shape of I among (ti , tj), [ti , tj), (ti , tj] or [ti , tj]. The satisfaction
of ψ within the interval (ti , tj + a) does not depend on the satisfaction of φ at ti and tj . When φ
becomes violated, there are three possible output behaviors depending on the actual duration of

the segment where φ does not hold. To avoid repetition, we just illustrate these cases in Figure 10.

We now construct the temporal tester T1
(0,a)

implementing the temporal relation q ↔1(0,a) p,

following the above observations. Let T1
(0,a)
= ⟨S, s, P ,Q,X , ι,∆, λ,γ ,F ⟩, where

• S = {s0, . . . , s3},
• P = {p} and Q = {q},
• X = {x},
• ∆ = {δ1, . . . ,δ17},
• F = ∅,

and ι, λ, γ , and δ1, . . . ,δ17 are given in Table 8 and Table 9. Over an open input segment where

p holds the tester, depicted in Figure 11, is in location s0 and the output satisfies q throughout

that segment. It is not hard to see that for any t in such a segment, there exists some t ′ > t that
is also within the segment and such that p holds at t ′. Singular points at which p is violated are

7
We have seen that the tester does not need to distinguish whether the input satisfies or violates p at the moment of the

transition.

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

From Real-Time Logic to Timed Automata :25

Table 8. States of T1
(0,a)

, their input and output labels, and invariant.

i si λ(si) γ (si) ι(si)

0 s0 p q ⊤

1 s1 ¬p q x < a
2 s2 ¬p q x < a
3 s3 ¬p ¬q ⊤

Table 9. Edges of T1
(0,a)

and their input and output labels.

i δi λ(δi) γ (δi) i δi λ(δi) γ (δi)

1 (s, ⊤, ∅, s0) ⊤ q 10 (s1, x = a, {x }, s1) p ¬q
2 (s, ⊤, {x }, s1) ⊤ ¬q 11 (s1, x = a, {x }, s2) p q
3 (s, ⊤, {x }, s2) ⊤ q 12 (s1, x = a, ∅, s3) p ¬q
4 (s, ⊤, ∅, s3) ⊤ ¬q 13 (s2, x < a, ∅, s0) ⊤ q
5 (s0, ⊤, ∅, s0) ¬p q 14 (s2, x < a, {x }, s1) p ¬q
6 (s0, ⊤, {x }, s1) ⊤ ¬q 15 (s2, x < a, {x }, s2) p q
7 (s0, ⊤, {x }, s2) ⊤ q 16 (s2, x < a, ∅, s3) p ¬q
8 (s0, x < a, ∅, s3) ⊤ ¬q 17 (s3, ⊤, {x }, s1) ¬p ¬q
9 (s1, x = a, ∅, s0) ⊤ q

s0

p/q

s1

¬p/q
x < a

s2

¬p/q
x < a

s3

¬p/¬q

⊤/q
x < a

⊤/q
x := 0 p/q

x = a
x := 0

p/¬q
x < a
x := 0 ¬p/¬q

x := 0

p/¬q
x = a

⊤/q
x = a

⊤/¬q
x := 0

p/¬q
x < a

¬p/q

p/q
x < a
x := 0

p/¬q
x = a
x := 0

⊤/q

⊤/¬q
x := 0

⊤/q
x := 0

⊤/¬q

⊤/¬q

Fig. 11. Temporal tester T1
(0,a)

.

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

:26 Thomas Ferrère, Oded Maler, Dejan Ničković, and Amir Pnueli

ignored, this fact is reflected by transition δ5. When the tester detects a switch to an input segment

I = (ti , tj) that violates p, it can make one of three output predictions, according to the duration of

I . The tester can:

(1) Predict that tj − ti < a, a case realized by transition δ7, which moves the tester into location

s2. In δ7, the clock x is reset, ensuring that the delay until the next observation of an input

satisfying p is strictly smaller than a, i.e. that one of δ13, δ14, δ15 or δ16 is taken by the tester.

The run is aborted if p remains violated at x = a. The output at location s2 satisfies q.
(2) Predict that tj − ti = a, a case realized by transition δ6, which has s1 as its outgoing location.

Note that the output of δ6 negates q while the output of s1 satisfies it. Consequently, this
prediction yields a singular point (time ti) where q does not hold. The clock x is reset in δ6
and is used to measure the delay until the next occurrence of an input satisfying p, which
must occur when x is exactly equal to a (realized by transitions δ9, δ10, δ11 and δ12). All other
runs are aborted.

(3) Predict that tj − ti > a, by taking transition δ8 to s3. In s3, the tester is only allowed to observe
inputs that violate p, all other runs are aborted. The tester makes a nondeterministic guess of

the time instant t such that tj − t = a, and consequently takes transition δ17 to s1 that resets
the clock x , after which it behaves as in the previous case. Predicting transition δ17 at any
time other than t = tj −a results in a run that is eventually aborted. Transition δ17 also marks

the last point in time in that segment where q is violated.

We have shown transducers implementing timed once and eventually operators of MITL. The

developments in this section demonstrate:

Proposition 6.6 (Correctness of TQ
(0,a)

and T1
(0,a)

). For any signalw over variables p and q,

• w |=0(q ↔Q(0,a) p) iff ⟦TQ
(0,a)

⟧(wp) = wq ;

• w |=0(q ↔1(0,a) p) iff ⟦T1
(0,a)

⟧(wp) = wq .

6.3 Main Result
Let us take the following definitions:

• The size of an MITL formula φ is the number of its subformulae.

• The resolution ofφ is the maximal relative interval width inφ, defined by r (p) = 0, r (φ1∨φ2) =
max{r (φ1), r (φ2)}, r (¬φ) = r (φ), and r (φ1 UI φ2) = r (φ1 SI φ2) = max{r (φ1), r (φ2), r (I)},

where r (I) = 2

⌈
sup I

sup I−inf I

⌉
+ 1 if sup I < ∞, r (I) = 1 otherwise.

We now state and prove the main result of this paper.

Theorem 6.7 (MITL Testers). For anyMITL formula of sizem and resolution n, one can construct
a temporal tester with O(mn) clocks and 2O (mn) locations.

Proof. Let φ be an arbitrary MITL formula with sizem and resolution n. We begin by rewriting

φ into the equivalent formula φ ′
according to the normal form of Proposition 4.5. Formula φ ′

has

size in O(mn), and resolution 1.

The construction of a tester T
q
φ ′ for normal form MITL formula φ ′

with input variables P and

fresh output variable q is inductive on the structure of φ ′
. For each subformulaψ of φ ′

, we construct

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

From Real-Time Logic to Timed Automata :27

a tester for its main subformula(s), and compose it with a tester associated to its main operator:

T
q
¬ψ = T

p
ψ ;T

q
¬p T

q
ψ1∨ψ2

= (T
p1
ψ1

∥T
p2
ψ2

) ;T
q
p1∨p2

T
q

1
(0,a)ψ

= T
p
ψ ;T

q

1
(0,a) p

T
q
ψ1 Uψ2

= (T
p1
ψ1

∥T
p2
ψ2

) ;T
q
p1 U p2

T
q

Q
(0,a)ψ

= T
p
ψ ;T

q

Q
(0,a) p

T
q
ψ1 Sψ2

= (T
p1
ψ1

∥T
p2
ψ2

) ;T
q
p1 S p2

where p, p1 and p2 are fresh variables. Testers for atomic and propositional formulae λ can be built

as two-state components with a complete transition graph whose locations and transitions are

labeled with λ/q and ¬λ/¬q. We then let T
q
φ = T

q
φ ′ .

The correctness of the above construction follows directly from propositions 6.5 and 6.6. lem-

mas 6.2, 6.3 and 6.4. Every atomic tester built to translate ψ from subsections 6.1 and 6.2 has at

most 4 locations and 1 clock; testers for Boolean or propositional variables have 2 locations and do

not have clocks. Thus, in the product of all atomic testers used to build the tester for φ there are

2
O (mn)

locations and O(mn) clocks. □

Let us remark that the rewritings involved in Proposition 4.5 do not incur an additional cost in

terms of clock-complexity. The developments in [29] show that exactly 2⌈ a
b−a ⌉+1 clocks are needed

to realize a tester for1(a,b). The number of clocks required for past operators is the same, as

showed in [53]. The testers T1
(a,b)

and T1
(a,b)

obtained for an arbitrary interval (a,b) by repeated

applications of Lemma 4.3 are indeed exactly optimal in their number of clocks. For the case of

(semi-)closed intervals this necessitates that multiple occurrences of the same timed eventually
formula share the same tester. This is one of the benefits of our compositional translation: several

occurrences of a subformula can share the same tester.

We can check that Theorem 6.7 allows us to recover the results of [5]:

Corollary 6.8 (MITL Verification). The satisfiability of MITL and the model-checking of timed
automata against MITL are decidable in EXPSPACE.

Proof. Letψ be anMITL formula of length |φ | in binary notation. The resolutionm of φ is in

2
O (|φ |)

and its size n inO(|φ |). We can construct a tester Tφ for φ according to Theorem 6.7, and take

its sequential composition with an acceptor for q to obtain a acceptor Aφ for φ whose dimensions

don’t exceed that of Tφ .

Using a dag representation, the normal form of φ can be computed in polynomial time. The

emptiness problem for (event-based) timed automata is in PSPACE by reduction to a path problem

in its region graph [4]. This result can easily be adapted to signal-based timed automata with

rational time constants: the signal-based semantics can be encoded e.g. using urgent locations, and

rational time constants can be accomodated by scaling them into integers (after scaling, the length

of time constants remains polynomial in |φ |). A node in the region graph can be described in space

logarithmic in the number of location and polynomial in the number of clocks and the total length

of time constants. When applying the procedure of [4], the acceptor Aφ does not require to be

constructed explicitly. The path problem in the region graph can be solved nondeterministically

by checking the existence of an edge between two nodes, while storing a constant number of

nodes. The region graph of Aφ is the product of the region graphs of its tester components, so that

nodes and edges can be computed on the fly. The description of each node and edge has a length

exponential in |φ |, so that the satisfiability of MITL is in EXPSPACE.

For model-checking a (signal-based) timed automaton B against φ, it suffices to replace Aφ
with B∥A¬φ in the above. The resulting decision procedure uses space polynomial in |B| and

exponential in |φ |, so thatMITL timed model-checking is in EXPSPACE. □

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

:28 Thomas Ferrère, Oded Maler, Dejan Ničković, and Amir Pnueli

The problems considered in Corollary 6.8 are in fact EXPSPACE-complete [5].

7 CONCLUSION
We presented a compositional method based on temporal testers for translatingMITL specifications

in their full generality to timed automata. Modularity, which lies in the heart of our approach,

yields a surprisingly simple and elegant translation, especially when compared to previous work.

The essence of this work is:

(1) We demonstrate that four basic operators, U, S,1(0,a) andQ(0,a), are sufficient to express

fullMITL;

(2) We construct the timed testers for these operators. These testers are straightforward to

understand and implement, each consisting of at most four locations and a single clock;

(3) We show that a network of communicating testers, derived from the structure of anMITL

property, yields an equivalent timed automaton.

Apart from the theoretical contributions of this paper, we also see several more practical ap-

plications of our translation. Firstly, it may provide an alternative automaton-based procedure

for runtime monitoring [55]. In fact, the offline monitoring procedure forMITL/STL described in

[52, 64] is based on the very similar concept of satisfaction signals propagated between sub-formulae.

After translating specifications to automata, we can check membership of a given signal by applying

on-the-fly subset construction [50] and detect property violations in an online fashion. Secondly,

we can use the timed automaton resulting from anMITL specification to generate test cases that

explore the requirements while achieving a given structural coverage.

REFERENCES
[1] IEEE Std 1850-2010 (Revision of IEEE Std 1850-2005) – IEEE Standard for Property Specification Language (PSL).

Standard, IEEE, 2010.

[2] ANSI/IEEE 1800-2012 – IEEE Standard for SystemVerilog - Unified Hardware Design, Specification, and Verification

Language. Standard, 2012.

[3] Rajeev Alur. Timed automata. In International Conference on Computer Aided Verification, pages 8–22. Springer, 1999.
[4] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer science, 126(2):183–235, 1994.
[5] Rajeev Alur, Tomás Feder, and Thomas A Henzinger. The benefits of relaxing punctuality. Journal of the ACM,

43(1):116–146, 1996.

[6] Rajeev Alur and Thomas A Henzinger. Back to the future: towards a theory of timed regular languages. In Foundations
of Computer Science, pages 177–186. IEEE, 1992.

[7] Rajeev Alur and Thomas A Henzinger. Logics and models of real time: A survey. In Real-Time: Theory in Practice,
pages 74–106. Springer, 1992.

[8] Rajeev Alur and Thomas A Henzinger. A really temporal logic. Journal of the ACM (JACM), 41(1):181–203, 1994.
[9] Eugene Asarin. Challenges in timed languages: From applied theory to basic theory. The Bulletin of the European

Association for Theoretical Computer Science, 83:106–120, 2004.
[10] Eugene Asarin, Paul Caspi, and Oded Maler. Timed regular expressions. Journal of the ACM, 49(2):172–206, 2002.

[11] Eugene Asarin and Cătălin Dima. Balanced timed regular expressions1. Electronic Notes in Theoretical Computer
Science, 68(5), 2003.

[12] Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen. Principles of model checking. MIT press, 2008.

[13] David Basin, Srđan Krstić, and Dmitriy Traytel. Almost event-rate independent monitoring of metric dynamic logic.

In Runtime Verification, pages 85–102. Springer, 2017.
[14] Béatrice Bérard, Michel Bidoit, Alain Finkel, François Laroussinie, Antoine Petit, Laure Petrucci, and Philippe Sch-

noebelen. Systems and software verification: model-checking techniques and tools. Springer Science & Business Media,

2013.

[15] Marcello M Bersani, Matteo Rossi, and Pierluigi San Pietro. An SMT-based approach to satisfiability checking of MITL.

Information and Computation, 245:72–97, 2015.
[16] Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, Nicolas Markey, Joël Ouaknine, and James Worrell. Model checking

real-time systems. In Clarke et al. [28], chapter 29, pages 1001 – 1046.

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

From Real-Time Logic to Timed Automata :29

[17] Thomas Brihaye, Morgane Estiévenart, and Gilles Geeraerts. On MITL and alternating timed automata. In Formal
Modeling and Analysis of Timed Systems, pages 47–61, 2013.

[18] Thomas Brihaye, Morgane Estiévenart, and Gilles Geeraerts. On MITL and alternating timed automata over infinite

words. In Formal Modeling and Analysis of Timed Systems, pages 69–84, 2014.
[19] Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, and Benjamin Monmege. Mightyl: A compositional translation from

MITL to timed automata. In Computer Aided Verification, pages 421–440, 2017.
[20] Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, and Benjamin Monmege. Timed-automata-based verification of MITL

over signals. In 24th International Symposium on Temporal Representation and Reasoning, TIME 2017, pages 7:1–7:19,
2017.

[21] Janusz A. Brzozowski and Ernst Leiss. On equations for regular languages, finite automata, and sequential networks.

Theoretical Computer Science, 10(1):19–35, 1980.
[22] Jerry R Burch, Edmund M Clarke, Kenneth L McMillan, David L Dill, and Lain-Jinn Hwang. Symbolic model checking:

10
20

states and beyond. Information and computation, 98(2):142–170, 1992.
[23] Ashok K Chandra and Larry J Stockmeyer. Alternation. In Foundations of Computer Science, 1976., 17th Annual

Symposium on, pages 98–108. IEEE, 1976.
[24] Alessandro Cimatti, Marco Roveri, Simone Semprini, and Stefano Tonetta. From PSL to NBA: a modular symbolic

encoding. In Formal Methods in Computer Aided Design, 2006. FMCAD’06, pages 125–133. IEEE, 2006.
[25] Edmund Clarke, Orna Grumberg, and Kiyoharu Hamaguchi. Another look at LTL model checking. In International

Conference on Computer Aided Verification, pages 415–427. Springer, 1994.
[26] Edmund M Clarke and E Allen Emerson. Design and synthesis of synchronization skeletons using branching time

temporal logic. In Workshop on Logic of Programs, pages 52–71. Springer, 1981.
[27] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT Press, 1999.

[28] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors. Handbook of Model Checking.
Springer International Publishing, 2018.

[29] Deepak D’Souza and R Matteplackel. A clock-optimal hierarchical monitoring automaton construction for MITL.

Technical report, 2013.

[30] Deepak D’Souza and Nicolas Tabareau. On timed automata with input-determined guards. In Formal Techniques,
Modelling and Analysis of Timed and Fault-Tolerant Systems, pages 68–83. Springer, 2004.

[31] Cindy Eisner and Dana Fisman. Functional specification of hardware via temporal logic. In Clarke et al. [28], chapter 24,

pages 795–829.

[32] Thomas Ferrère, Oded Maler, and Dejan Ničković. Trace diagnostics using temporal implicants. In International
Symposium on Automated Technology for Verification and Analysis, pages 241–258. Springer, 2015.

[33] Paul Gastin and Denis Oddoux. Fast LTL to büchi automata translation. In International Conference on Computer Aided
Verification, pages 53–65. Springer, 2001.

[34] Rob Gerth, Doron Peled, Moshe Y Vardi, and Pierre Wolper. Simple on-the-fly automatic verification of linear temporal

logic. In Protocol Specification, Testing and Verification XV, pages 3–18. Springer, 1995.
[35] Dimitra Giannakopoulou and Flavio Lerda. From states to transitions: Improving translation of LTL formulae to büchi

automata. In International Conference on Formal Techniques for Networked and Distributed Systems, pages 308–326.
Springer, 2002.

[36] Thomas A Henzinger. It’s about time: Real-time logics reviewed. In International Conference on Concurrency Theory,
pages 439–454. Springer, 1998.

[37] Thomas A Henzinger, J-F Raskin, and P-Y Schobbens. The regular real-time languages. In Automata, Languages and
Programming, pages 580–591. Springer, 1998.

[38] Yoram Hirshfeld and Alexander Rabinovich. Quantitative temporal logic. In International Workshop on Computer
Science Logic, pages 172–187. Springer, 1999.

[39] YoramHirshfeld and Alexander Rabinovich. Logics for real time: Decidability and complexity. Fundamenta Informaticae,
62(1):1–28, 2004.

[40] Yoram Hirshfeld and Alexander Rabinovich. Timer formulas and decidable metric temporal logic. Information and
Computation, 198(2):148–178, 2005.

[41] Yoram Hirshfeld and Alexander Rabinovich. An expressive temporal logic for real time. In Mathematical Foundations
of Computer Science 2006, pages 492–504. Springer, 2006.

[42] Yoram Hirshfeld and Alexander Rabinovich. Expressiveness of metric modalities for continuous time. In Computer
Science–Theory and Applications, pages 211–220. Springer, 2006.

[43] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and reasoning about systems. Cambridge university

press, 2004.

[44] Yonit Kesten and Amir Pnueli. A compositional approach to CTL* verification. Theoretical Computer Science, 331(2-
3):397–428, 2005.

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

:30 Thomas Ferrère, Oded Maler, Dejan Ničković, and Amir Pnueli

[45] Yonit Kesten, Amir Pnueli, and Li-on Raviv. Algorithmic verification of linear temporal logic specifications. In

International Colloquium on Automata, Languages, and Programming, pages 1–16. Springer, 1998.
[46] Roland Kindermann, Tommi A. Junttila, and Ilkka Niemelä. Bounded model checking of an MITL fragment for timed

automata. In 13th International Conference on Application of Concurrency to System Design, ACSD 2013, pages 216–225,
2013.

[47] Dileep Raghunath Kini, Shankara Narayanan Krishna, and Paritosh K. Pandya. On construction of safety signal

automata forMITL[U,S] using temporal projections. In FormalModeling and Analysis of Timed Systems - 9th International
Conference, FORMATS 2011, pages 225–239, 2011.

[48] Ron Koymans. Specifying real-time properties with metric temporal logic. Real-time systems, 2(4):255–299, 1990.
[49] Ron Koymans, Jan Vytopil, and Willem P de Roever. Real-time programming and asynchronous message passing. In

Proceedings of the second annual ACM symposium on Principles of distributed computing, pages 187–197. ACM, 1983.

[50] Moez Krichen and Stavros Tripakis. Conformance testing for real-time systems. Formal Methods in System Design,
34(3):238–304, 2009.

[51] Kim G Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. International journal on software tools for technology
transfer, 1(1-2):134–152, 1997.

[52] Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals. In FORMATS/FTRTFT, pages
152–166, 2004.

[53] Oded Maler, Dejan Nickovic, and Amir Pnueli. Real time temporal logic: Past, present, future. In Formal Modeling and
Analysis of Timed Systems, pages 2–16. Springer, 2005.

[54] Oded Maler, Dejan Nickovic, and Amir Pnueli. From MITL to timed automata. In Formal Modeling and Analysis of
Timed Systems, pages 274–289. Springer, 2006.

[55] Oded Maler, Dejan Nickovic, and Amir Pnueli. Checking temporal properties of discrete, timed and continuous

behaviors. In Pillars of Computer Science, pages 475–505, 2008.
[56] Oded Maler and Amir Pnueli. On recognizable timed languages. In International Conference on Foundations of Software

Science and Computation Structures, pages 348–362. Springer, 2004.
[57] Zohar Manna and Amir Pnueli. The anchored version of the temporal framework. In Workshop/School/Symposium of

the REX Project, pages 201–284. Springer, 1988.
[58] Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent systems: Specification. Springer Science &

Business Media, 2012.

[59] Zohar Manna and Amir Pnueli. Temporal verification of reactive systems: safety. Springer Science & Business Media,

2012.

[60] Nicolas Markey. Temporal logic with past is exponentially more succinct. EATCS Bulletin, 79:122–128, 2003.
[61] Max Michel. Algebre de machines et logique temporelle. In Annual Symposium on Theoretical Aspects of Computer

Science, pages 287–298. Springer, 1984.
[62] Max Michel. Computation of temporal operators. Logique et Analyse, 28(110/111):137–152, 1985.
[63] Satoru Miyano and Takeshi Hayashi. Alternating finite automata on ω-words. Theoretical Computer Science, 32(3):321–

330, 1984.

[64] Dejan Nickovic. Checking timed and hybrid properties: Theory and applications. PhD thesis, Université Joseph Fourier,

Grenoble, France, 2008.

[65] Maurice Nivat and Dominique Perrin. Ensembles reconnaissables de mots bi-infinis. In Proceedings of the fourteenth
annual ACM symposium on Theory of computing, pages 47–59. ACM, 1982.

[66] Joël Ouaknine and James Worrell. On the decidability of metric temporal logic. In Logic in Computer Science, pages
188–197. IEEE, 2005.

[67] Sam Owre, John M Rushby, and Natarajan Shankar. Pvs: A prototype verification system. In International Conference
on Automated Deduction, pages 748–752. Springer, 1992.

[68] Amir Pnueli and Aleksandr Zaks. PSL model checking and run-time verification via testers. In International Symposium
on Formal Methods, pages 573–586. Springer, 2006.

[69] Amir Pnueli and Aleksandr Zaks. On the merits of temporal testers. In 25 Years of Model Checking, pages 172–195.
Springer, 2008.

[70] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent systems in cesar. In International
Symposium on programming, pages 337–351. Springer, 1982.

[71] Jean-François Raskin and Pierre-Yves Schobbens. State clock logic: A decidable real-time logic. In International
Workshop on Hybrid and Real-Time Systems, pages 33–47. Springer, 1997.

[72] Nima Roohi and Mahesh Viswanathan. Revisiting mitl to fix decision procedures. In International Conference on
Verification, Model Checking, and Abstract Interpretation, pages 474–494. Springer, 2018.

[73] Fabio Somenzi and Roderick Bloem. Efficient Büchi automata from LTL formulae. In International Conference on
Computer Aided Verification, pages 248–263. Springer, 2000.

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

From Real-Time Logic to Timed Automata :31

[74] Boris A Trakhtenbrot. Understanding basic automata theory in the continuous time setting. Fundamenta Informaticae,
62(1):69–121, 2004.

[75] Moshe Y Vardi. Alternating automata and program verification. In Computer Science Today, pages 471–485. Springer,
1995.

[76] Moshe Y Vardi and Pierre Wolper. An automata-theoretic approach to automatic program verification. In Proceedings
of the First Symposium on Logic in Computer Science, pages 322–331. IEEE Computer Society, 1986.

[77] ThomasWilke. Specifying timed state sequences in powerful decidable logics and timed automata. In Formal Techniques
in Real-Time and Fault-Tolerant Systems, pages 694–715. Springer, 1994.

Journal of the ACM, Vol. 1, No. 1, Article . Publication date: October 2020.

	Abstract
	1 Introduction
	2 Temporal Testers
	3 Linear Temporal Logic
	4 Signals and their Temporal Logic
	4.1 Signals
	4.2 MITL: Real-time Temporal Logic

	5 Timed Automata
	6 From MITL to Timed Transducers
	6.1 Temporal Testers for `3́9`42`"̇613A``45`47`"603AS and `3́9`42`"̇613A``45`47`"603AU
	6.2 Temporal Testers for `3́9`42`"̇613A``45`47`"603A'121(0,a) and `3́9`42`"̇613A``45`47`"603A'061(0,a)
	6.3 Main Result

	7 Conclusion
	References

