
Efficient Robust Monitoring for STL

Alexandre Donzé1, Thomas Ferrère2, Oded Maler2

1University of California, Berkeley, EECS dept, donze@eecs.berkeley.edu
2 Verimag, CNRS and Grenoble University, {maler|ferrere}@imag.fr

Abstract. Monitoring transient behaviors of real-time systems plays an
important role in model-based systems design. Signal Temporal Logic
(STL) emerges as a convenient and powerful formalism for continuous
and hybrid systems. In this paper we present an efficient algorithm for
computing the robustness degree in which a piecewise-continuous signal
satisfies or violates an STL formula. Our algorithm, by leveraging state-
of-the-art streaming algorithms from Signal Processing, is linear in the
size of the signal and its implementation in the Breach tool is shown to
outperform alternative implementations.

1 Introduction

Temporal Logic (TL) is a popular formalism, introduced into systems design
[Pnu77] as a language for specifying acceptable behaviors of reactive systems.
Traditionally, it has been used for formal verification, either by deductive meth-
ods [MP91,MP95], or algorithmic methods (model checking [CGP99,QS82]). In
this framework, the behaviors in question are typically discrete, that is, sequences
of states and/or events. Two other assumptions concerning this use of TL in ver-
ification are implicit:

1. Systems correctness is affirmed if all system behaviors satisfy the specifica-
tion. Thus model checking is based on composing the system model with
an automaton for the specification and analyzing all possible paths in the
combined transition system;

2. The satisfaction of a property by a behavior is a purely discrete matter
(yes/no), which is in the spirit of most logics.1

In recent years, several trends suggest alternative ways to use TL in the design
of complex systems and also during their operations. The first trend is due to the
state-explosion wall, which limits the size of systems that can be verified (not
to mention systems like programs with numerical variables or hybrid systems
where verification is not even decidable). As a result we can see a proliferation of
statistical methods a-la Monte-Carlo, where universal quantification is replaced
by random simulation, with and even without statistical coverage guarantees.
In this framework, also known as runtime verification, assertion checking or

1 There are some branches of multi-valued logic such as Fuzzy [Zad65] and probabilistic
[Nil86] but mainstream Logic is about true and false.

monitoring, the temporal formula is still used for a rigorous specification of the
requirements, but unlike model-checking, it is evaluated on a single behavior at
a time, a much easier task.

Unlike formal verification, monitoring does not require a model of the sys-
tem. All it needs is a process that generates observable behaviors. As such it
can be applied to systems which are viewed as black boxes either because their
developers want to protect their intellectual property or because it is a complex
program without a decent and tractable formal model. For the same reason,
temporal property checking can be integrated in monitoring and diagnostics of
real systems during their operation and provide more refined means to define
and detect hazardous situations.

The present paper is based on signal temporal logic (STL) , a formalism
for specifying properties of dense-time quantitative signals [MN04,MNP08], for
which a monitoring tool called AMT [NM07] has been developed and used in
the context of analog and mixed-signal circuits [JKN10,MN12]. In many real-life
applications, especially when dealing with continuous dynamics and numerical
quantities, yes/no answers provide only partial information and could be aug-
mented with quantitative information about the satisfaction to provide a better
basis for decision making. To illustrate, consider the formula x < c for constant
c and a real-valued variable x ranging over some domain X. The formula splits
X into X0 = {x : x ≥ c} and X1 = {x : x < c}. The latter is called the validity
domain of the formula. When we pick a number x ∈ X, the answer to the sat-
isfaction query x |= x > c depends on the membership of x in X1 but not on its
relative position inside or outside X1. The robustness degree of the satisfaction
should tell us whether x satisfies the formula by far (x� c) or very marginally
(x = c − ε for a small positive ε). For this example, the robustness degree is
captured by c− x whose sign indicates satisfaction/violation and its magnitude
indicates the distance between x and the boundary between X0 and X1.

Such notions have been introduced into TL by Fainekos and Pappas [FP09]
for STL and by Fages and Rizk [RBFS08] for LTL over real-valued sequences.
The robustness information is useful to assess the severity of a detected malfunc-
tioning of a working systems. It can also increase the confidence in the results
of incomplete-coverage validation techniques, if it so happens that all sampled
behaviors satisfy the requirements robustly. In a previous paper [DM10] we have
introduced notions of robustness both in space and time, and provided an al-
gorithm for computing the robustness degree with respect to a given signal.
Signals are represented as sequences of time-stamped points and are interpreted
as piecewise-linear via interpolation.

The major contribution of this paper is a new optimal algorithm that com-
putes the robustness degree for such a signal in time linear with respect to the
size of the signal (number of points). This algorithm guarantees that the over-
head added by monitoring to the simulation process is acceptable, thus making
robustness-based monitoring a feasible technology that can be used routinely as
an add-on for simulation engines. This low complexity is due to two key ideas:

– The use of the optimal streaming algorithm of Daniel Lemire [Lem06] to
compute the min and max of a numeric sequence over a sliding window;

– The rewriting of the (bounded) timed “until” operator [DT04] as a conjunc-
tion of simpler timed and untimed operators.

The algorithm has been implemented at the core of Breach [Don10] which is
a highly versatile toolbox for simulation-based analysis of complex systems,
recently applied to biological reaction networks [DFG+11,MDMF12], to mine
requirements of Simulink models in the automative industry [JDDS13] and to
characterize patterns in musical signals [DMB+12]. Our implementation outper-
forms the tool S-TaLiRo [ALFS11], to the best of our knowledge the only other
tool implementing quantitative semantics for dense time.

The rest of the paper is organized as follows. In Section 2, we recall the main
definitions of STL and its quantitative semantics. In Section 4 we present our
robustness computation framework and describe the algorithms for simple op-
erators, such as negation and conjunction. Section 4 treats in details the case of
untimed until and timed eventually, which completes the algorithms presenta-
tion. Section 5 discusses the theoretical worst-case complexity of the computation
and Section 6 provides experimental results.

2 Signal Temporal Logic

In this section we recall the framework set in [MN04] to specify properties of
real-valued signals, we extend it to a multi-valued logic as proposed by [FP09],
and present the main properties of this extension.

We adopt the following conventions. The set of Boolean values is taken as
B := {⊥,>}, with ⊥ < >, −> = ⊥ and −⊥ = >, inducing the well known
algebra. We write R := R ∪ B for the totally ordered set of real numbers with
smallest element ⊥ and greatest element >.

A signal will be a function D → E, with D an interval of R+ and E ⊂
R. Signals with E = B are called Boolean signals, whereas those where E =
R are real-valued signals. An execution trace w is a set of real-valued signals
{xw1 , ..., xwk } defined over some interval D of R+, which is called the time domain
of w. Such a trace can be “booleanized” through a set of threshold predicates
of the form xi ≥ 0. Signal Temporal Logic is then a simple extension of Metric
Temporal Logic where real-valued variables (xi)i∈N are transformed into Boolean
values via these predicates2 The syntax of STL will be taken as follows:

ϕ := true | xi ≥ 0 | ¬ϕ | ϕ ∧ ϕ | ϕUI ϕ

Here xi are variables, and I is a closed, non-singular interval of R+. This includes
bounded intervals [a, b] and unbounded intervals [a,+∞) for any 0 ≤ a < b.

Let w be a trace of time domain D. The formula ϕ is said to be defined
over a time interval dom(ϕ,w) given by the following rules: dom(true, w) =

2 More expressive predicates could be added in the form of a preprocessing step, which
we do not include explicitely in our framework.

dom(xi ≥ 0, w) = D, dom(¬ϕ,w) = dom(ϕ,w), dom(ϕ ∧ ψ,w) = dom(ϕ,w) ∩
dom(ψ,w), dom(ϕUI ψ,w) = {t ∈ R | t + [0, inf(I)] ⊂ dom(ϕ,w) and t +
inf(I) ∈ dom(ψ,w)}.

Boolean Semantics For a trace w, the validity of an STL formula ϕ at a given
time t ∈ dom(ϕ,w) is set according to the following inductive definition.

w, t � true
w, t � xi ≥ 0 iff xwi (t) ≥ 0
w, t � ¬ϕ iff w, t 2 ϕ
w, t � ϕ ∧ ψ iff w, t � ϕ and w, t � ψ
w, t � ϕUI ψ iff exists t′ ∈ t+ I s.t. w, t′ � ψ and for all t′′ ∈ [t, t′] , w, t′′ � ϕ

We can redefine other usual operators as syntactic abbreviations:

false := ¬true ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)
♦I ϕ := true UI ϕ �I ϕ := ¬♦I ¬ϕ

We use ♦ and U as shorthands for untimed operators ♦[0,+∞) and U[0,+∞) .
For a given formula ϕ and execution trace w, we define the satisfaction signal
χ(ϕ,w, .) as follows:

for all t ∈ dom(ϕ,w) χ(ϕ,w, t) :=

{
> if w, t � ϕ
⊥ otherwise

Monitoring the satisfaction of a formula ϕ can be done by computing for each
subformula ψ of ϕ the entire satisfaction signal χ(ψ,w, .). The procedure is
recursive on the structure of the formula, and goes from the atomic predicates
up to the top formula [MN04].

Quantitative Semantics Given a formula ϕ, trace w, and time t ∈ dom(ϕ,w),
we define the quantitative semantics ρ(ϕ,w, t) by induction as follows:

ρ(true, w, t) = >
ρ(xi ≥ 0, w, t) = xwi (t)

ρ(¬ϕ,w, t) = −ρ(ϕ,w, t)

ρ(ϕ ∧ ψ,w, t) = min{ρ(ϕ,w, t), ρ(ψ,w, t)}
ρ(ϕUI ψ,w, t) = sup

t′∈t+I
min{ρ(ψ,w, t′), inf

t′′∈[t,t′]
ρ(ϕ,w, t′′)}

It is worth noting that if we let χ(xi ≥ 0, w, t) =

{
> if xwi (t) ≥ 0
⊥ otherwise

and apply

to χ the above inductive rules, we fall back to Boolean signals and obtain an
equivalent characterization of χ. In the quantitative semantics however, atomic
predicates xi ≥ 0 do not evaluate to > or ⊥ but give a real value representing the
distance to satisfaction or to violation, which is then propagated in the formula
using the {min,max,−} operations on R.

From the lattice properties of (R, <), we are granted the axioms of associa-
tivity, commutativity, neutral element, and distributivity. The minus function
remains involutive, which gives us the usual de Morgan laws ¬(ϕ∨ψ) ∼ ¬ϕ∧¬ψ
and ¬♦I ϕ ∼ �I ¬ϕ. Derived operators enjoy the same natural interpreta-
tion as in the Boolean semantics: ρ(ϕ ∨ ψ,w, t) = max{ρ(ϕ,w, t), ρ(ψ,w, t)},
ρ(♦I ϕ,w, t) = sup

t′∈t+I
ρ(ϕ,w, t′), and ρ(�I ϕ,w, t) = inf

t′∈t+I
ρ(ϕ,w, t′).

Property of Robustness Estimate The quantitative semantics of STL have
two fundamental properties, that would alone justify their introduction. Firstly,
whenever ρ(ϕ,w, t) 6= 0 its sign indicates the satisfaction status.

Theorem 1 (Soundness). Let ϕ be an STL formula, w a trace and t a time.

ρ(ϕ,w, t) > 0⇒ w, t � ϕ

ρ(ϕ,w, t) < 0⇒ w, t 2 ϕ

Secondly, if w satisfies ϕ at time t, any other trace w′ whose pointwise distance
from w is smaller than ρ(ϕ,w, t) also satisfies ϕ at time t.

Theorem 2 (Correctness). Let ϕ be an STL formula, w and w′ traces over
the same time domain, and t ∈ dom(ϕ,w).

w, t � ϕ and ‖w − w′‖∞ < ρ(ϕ,w, t) ⇒ w′, t � ϕ

On these grounds we now talk of ρ as the robustness estimate. For a given
trace w, and ϕ an STL formula, we will refer to the robustness signal of ϕ with
respect to w, as the signal ρ(ϕ,w, .). Similarly to the satisfaction signal, it is
defined over the time domain dom(ϕ,w).

Until Rewrite The properties ϕU[a,b] ψ ∼ ♦[a,b] ψ ∧ ϕU[a,+∞) ψ and
ϕU[a,+∞) ψ ∼ �[0,a] (ϕU ψ) extend from Boolean to quantitative semantics.

Lemma 1. For ϕ,ψ two STL formula, w a trace and any time t where defined,

ρ(ϕU[a,b] ψ,w, t) = ρ(♦[a,b] ψ ∧ ϕU[a,+∞) ψ,w, t) (1)

ρ(ϕU[a,+∞) ψ,w, t) = ρ
(
�[0,a] (ϕU ψ), w, t

)
(2)

Proof. We only prove the first rewrite rule, the second can be obtained by a sim-
ilar argument. Let us take y, y′ the robustness signals of ϕ,ψ relatively to w. We
note u := sup

τ∈[a,b]
min{y′(τ), inf

[0,τ]
y} and v := min

{
sup
[a,b]

y′, sup
τ∈[a,+∞)

min{y′(τ), inf
[0,τ]

y}
}

the robustness values of the main formulas of (1) at a given time t. Suppose that
u 6= v, for instance u < v. We define the signals x : t 7→ y(t) − u+v

2 and
x′ : t 7→ y′(t)− u+v

2 . Now consider the formulas γ := (x ≥ 0) U[a,b] (x′ ≥ 0) and
θ := ♦[a,b] (x′ ≥ 0) ∧ (x ≥ 0) U[a,+∞) (x′ ≥ 0). By commutation of constants
with sup and inf we get ρ(γ,w, t) = u − u+v

2 < 0 and ρ(θ, w, t) = v − u+v
2 > 0,

so that w, t 2 γ while w, t � θ. This is impossible, as γ ∼ θ in the Boolean
semantics.

3 Computing the Robustness Estimate

While monitoring a system, real or simulated, signals are available to us as finite
timed words over the alphabet Rn. We interpret these by linear interpolation.
This section presents the basic framework for computing robustness under this
hypothesis. The general robustness computation procedure is as follows.

Algorithm 1 Robustness(ϕ,w)

switch (ϕ)
case true:

return > % a constant > signal
case xi ≥ 0:

return xw
i

case ∗ ϕ1:
y := Robustness(ϕ1, w)
return Compute(∗ , y)

case ϕ1 ∗ ϕ2:
y := Robustness(ϕ1, w)
y′ := Robustness(ϕ2, w)
return Compute(∗ , y, y′)

end switch

Definition 1. A signal y is said to be finitely piecewise-linear, continuous (f.p.l.c.
for short) if there exists a finite sequence (ti)i≤ny

such that:

– the definition domain of y is [t0, tny)

– for all i < ny, y is continuous at ti and affine on [ti, ti+1)

(ti)i≤ny
will be called the time sequence of y.

Let us note dy(t) the derivative of y at time t. In what follows, any signal in the
observed trace will be assumed to be f.p.l.c. Such a signal will be represented
by its sequence (ti, y(ti), dy(ti))i<ny , along with cut-off time tny . As we assume
continuity, this representation is slightly redundant, but facilitates the splitting
of signals into segments. We may in addition require the limit of y at tny

, for
which we abuse the notation and simply write y(tny

).

We will see that for every operator, the quantitative semantics preserves
the f.p.l.c. property of signals, so that we can always assume such signals as
inputs of the calculation in the inductive step. Note that the continuity is clearly
preserved by the sup and inf operations. Also, no new derivative value is created
in the process, so that from a computational standpoint the overhead of handling
derivatives is compensated by the interpolation speedup.

Boolean operators Computing the robustness signal of ¬ϕ from that of ϕ is
trivial. One can simply note that if the sequence (ti, y(ti), dy(ti))i<ny

represents
ρ(ϕ,w, .) then the sequence (ti,−y(ti),−dy(ti))i<ny represents ρ(¬ϕ,w, .). For
conjunction, let us take y and y′ the robustness signals of ϕ and ψ respectively,
producing z the robustness signal of ϕ ∧ ψ. We build the sequence (ri)i≤nz

containing the sampling points of y and y′ where they are both defined, and
the points where y and y′ punctually intersect. Note that there are less than
ny + ny′ such intersections and ny + ny′ sampling points, so that we have nz ≤
4 ·max{ny, ny′}. Now, for all i < nz we let, using the lexicographic order(

z(ri)
dz(ri)

)t
= min

{(
y(ri)
dy(ri)

)t
,

(
y′(ri)
dy′(ri)

)t}
The resulting sequence (ri, z(ri), dz(ri))i<nz adequately represents ρ(ϕ∧ψ,w, .).

Untimed eventually ♦ Although not primitive in the syntax, this operator is
easily computed and will be used as a subroutine for the until computation. We
take y the robustness signal of ϕ, (ti)i<ny

its time sequence, and z the robustness
signal z of ♦ ϕ. For any t in its definition domain z(t) = sup

t′≥t
y(t′), and we have

immediately the following property: ∀s < t, z(s) = max{sup
[s,t)

y, z(t)}.

The step computation can be derived by applying the property at t = ti+1

the time of some sample i + 1 < ny. Depending on the possible orderings of
{y(ti), y(ti+1), z(ti+1)} there are four possibilities,

y(ti) ≤ y(ti+1) : ∀s ∈ [ti, ti+1), z(s) = max{y(ti+1), z(ti+1)}
y(ti) > y(ti+1) ≥ z(ti+1) : ∀s ∈ [ti, ti+1), z(s) = y(s)

z(ti+1) ≥ y(ti) > y(ti+1) : ∀s ∈ [ti, ti+1), z(s) = z(ti+1)

y(ti) > z(ti+1) > y(ti+1) : ∃t∗ ∀s ∈ [ti, t
∗), z(s) = y(s) and

∀s ∈ [t∗, ti+1), z(s) = z(ti+1)

The induction is initialized by substituting ⊥ for z(tny
) in the property. Over

the whole signal y, each sample ti of y generates up to two samples in z, so that
nz ≤ 2 · ny.

Until We treat the case of timed until by rewriting it into untimed until and
timed eventually. This decomposition, due to [DT04] has been successfully ap-
plied to monitoring STL for the Boolean semantics. We have proved (Lemma 1)
that it also holds for the quantitative semantics. For unbounded until U[a,+∞)

we can use directly the second rewrite rule, whereas for bounded until we have
ϕU[a,b] ψ ∼ ♦[a,b] ψ ∧�[0,a] (ϕU ψ) by first and second rewrite rules. Globally
being the dual of eventually, it only remains to develop an algorithm for ♦[a,b]

with [a, b] a non-singular interval, along with an algorithm for the untimed until.
These more involved computations are the object of the next section.

4 Algorithms

From a close examination of operators ¬, ∧ and ♦ just achieved, we can im-
mediately derive the corresponding Compute() algorithms with time-complexity
linear in the number of samples of their input signals. By duality we also have
an algorithm for ∨ with the same property. We now give detailed algorithms for
the remaining two operators: U, and ♦[a,b] .

For any signal y and two time instants s < t ∈ R+ we note y�[s,t) the
restriction of y to the time interval [s, t). The output signal z will be computed
as a series of segments z�[s,t) for s, t extracted from the time sequence of the
input signals.

Operator U Let y and y′ be the robustness signals of ϕ and ψ respectively,
with (ti)i≤ny

and (t′i)i≤ny′ their respective time sequences. The calculation out-
puts z, the robustness signal of ϕU ψ relative to w. By definition we have
z(t) = sup

τ∈[t,+∞)

min{y′(τ), inf
[t,τ]

y}.

Similarly to the Boolean semantics [MN04], the computation can be done
by backward induction. Let s < t be two times in dom(ϕU ψ). If we define
zt(s) := sup

τ∈[s,t)
min{y′(τ), inf

[s,τ]
y}, by the general properties of sup and inf we

obtain the following inductive formula:

z(s) = max
{
zt(s),min{ inf

[s,t)
y, z(t)}

}
Suppose that y is affine on the interval [s, t].

– If dy(s) ≤ 0 then ∀τ ∈ [s, t), inf
[s,τ]

y = y(τ). Thus zt(s) = sup
τ∈[s,t)

min{y′(τ), y(τ)},

and z(s) = max
{
zt(s),min{y(t), z(t)}

}
– Otherwise ∀τ ∈ [s, t), inf

[s,τ]
y = y(s). Therefore zt(s) = sup

τ∈[s,t)
min{y′(τ), y(s)} =

min{y(s), sup
[s,t)

y′}, and z(s) = max
{
zt(s),min{y(s), z(t)}

}
.

We let t = ti in the above, and compute z(s) for all s on the segment [ti, ti+1).
Taking the notation v for the constant signal of value v, we can now express all
the operations involved as computations previously implemented. This gives us
Algorithm 2, written under the simplifying assumption that [t0, tny) ⊆ dom(ψ,w),
which can always be achieved by interpolation of y at t′0, t

′
ny′

and sample renum-

bering if necessary.

Lemma 2. The time-complexity of Algorithm 2 is linear in max{ny, ny′}.

Proof. The algorithm takes ny steps. Step i computes the signal z on the interval
[ti, ti+1) from partial signals y�[ti,ti+1) and y′�[ti,ti+1)

along with two constant
signals. Each step uses algorithms linear in the size of their inputs, so that the
execution takes time linear in the sum of the size of the inputs of each step which
is at most 3 · ny + ny′ . Thus the total execution time is linear in max{ny, ny′}.

Algorithm 2 Compute(U , y, y′)

z0 := ⊥
i := ny − 1
while i ≥ 0 do

if dy(ti) ≤ 0 then
z1 := Compute(∧, y′

�[ti,ti+1)
, y�[ti,ti+1))

z2 := Compute(♦ , z1)
z3 := Compute(∧, y�[ti,ti+1), z0)
z�[ti,ti+1) := Compute(∨, z2, z3)

else
z1 := Compute(♦ , y′

�[ti,ti+1)
)

z2 := Compute(∧, z1, y�[ti,ti+1))

z3 := Compute(∧, y(ti+1), z0)
z�[ti,ti+1) := Compute(∨, z2, z3)

end if
i := i− 1
z0 := z(ti+1)

end while
return z

Operator ♦[a,b] Let y be the robustness signal of ϕ with respect to w, with
(ti)i≤ny

its time sequence. For a given I = [a, b] we want to compute z : t 7→ sup
t+I

y

the robustness signal of ♦I ϕ with respect to w.

Let t be a given time instant in dom(♦I ϕ,w). Due to the f.p.l.c. hypothesis
on y, one can easily see that there exist t∗ ∈ t+I such that y(t∗) = z(t). Moreover
it is sufficient to consider candidates for the maximum in the time sequence of
y, along with t+ a and t+ b. Namely

sup
t+[a,b]

y = max {y(t+ a), y(t+ b)} ∪ {y(ti) | ti ∈ t+ (a, b]}

The problem of computing z is thus reduced to computing the maximum of
{y(ti) | ti ∈ t+ (a, b]} when non empty, followed by a pointwise maximum with
y(t+a), y(t+b). Intuitively, time intervals where {y(ti) | ti ∈ t+(a, b]} provide the
maximum corresponding to “plateau” phases, where the supremum is reached
at a point in the interior of the interval t+ I. On the other hand intervals where
y(t+ a) or y(t+ b) give the maximum correspond to descending and ascending
phases, respectively.

The maximum of {y(ti) | ti ∈ t+(a, b]} can be computed by a straightforward
adaptation of the running maximum filter algorithm given by [Lem06]. This
work addresses the problem of computing, for signals over time domain N, the
maximum over a shifting window consisting of k elements. It it the first algorithm
with time complexity linear in the length of the signal and independent of the
window size k. We generalize this algorithm to the case of variable time-step.

The main idea is to maintain, as we increase t, a set of indices M , so-called
a monotonic edge, such that

i ∈M iff ti ∈ t+ I and for all tj > ti in t+ I, y(tj) < y(ti)

In particular for any given t, if M 6= ∅ we have y(tminM) = max{y(ti) | ti ∈
t+ (a, b]}. Assume M is known for a given time s, and is non empty. We begin
by finding the first t > s so that a either a new point appears at t + b or some
maximum candidate in M disappears at t+a, or both. We update M accordingly:
if tminM = t + a we remove minM , the first index from M . Then if t + b = ti
for a given i then we compare y(ti) with y(tk) for k ∈M in decreasing order of
k, starting with the last candidate y(tmaxM). If k ∈ M is so that tk ≤ ti then
tk is removed from M as outperformed by ti, otherwise we stop. At this point i
is inserted as the new last element of M . We now have in M an ordered set of
maximum candidates in t+I; we can output y(tminM) and repeat the procedure
for the next event. The algorithm steps are illustrated in Figure 1.

b+a t+a t+b t+a t+b

Step 1 Step 2 Step 3

Fig. 1. Steps of the Lemire algorithm. Initially, M contains indexes u1, u2, u3,
u4. At step 2, a new value appears at t+ b which removes u3 and u4. At step 3,
t+ a reaches u1 which is removed from M .

We obtain the full algorithm, for piecewise linear signals, by integrating this
value with y(t+a) and y(t+b). Let us note ya : t 7→ y(t+a) and yb : t 7→ y(t+b);
such signals can be computed by simple shift of the time sequence of y. We see
y(tminM) as a constant signal, noted y(tminM). We then use the ∨ algorithm to
take the pointwise maximum of ya, yb and y(tminM). Note that on a step interval
[s, t) of our computation, these three signals are always affine. The pseudo-code
of Algorithm 3 details the overall operation. For simplicity’s sake we ignore the
case whereby M = ∅ (occurs if [a, b] is finer than some time step). In such a
case we would only need to place the next ti in M and output the pointwise
maximum of ya, yb on the current segment.

Lemma 3. The time-complexity of Algorithm 3 is linear in ny.

Proof. We begin by noticing that the computation of signals ya, yb and y′ use
previous algorithms linear in ny. For each step, the integration of y′ with the

Algorithm 3 Compute(♦[a,b] , y)

ya := Shift(y,−a), yb := Shift(y,−b), y′ := Compute(∨, ya, yb)
s := t0 − b, t := s, i := 0, M := {0}
while t + a < tny do

t := min{tminM − a, ti+1 − b}
if t = tminM − a then

M := M r {minM}
s := t

end if
if t = ti+1 − b then

while y(ti+1 − b) ≥ y(tmaxM) and M 6= ∅ do
M := M r {maxM}

end while
M := M ∪ {i + 1}
i := i + 1

end if
if s ≥ t0 then

z�[s,t) := Compute(∨, y′
�[s,t), y(tminM))

end if
end while
return z

constant signal y(tminM) over the whole domain involves at most 3 samples;
there are at most 2 ·ny steps, so that the overall cost of these operations is linear
in ny. All that is left to show is that maintaining M throughout the computation
takes time linear in ny.

Storing M as a doubly-linked queue, we keep a sorted array and the elements
to be accessed are always at the front or the back. Therefore we can consider
the cost of each operation on M as unitary, and independent of the size of M .
Under this hypothesis the cost of computing M is proportional to the number
of value comparisons involved.With the same argument as [Lem06] we notice
that on the whole run, there are ny elements entering M and thus there are also
ny elements are leaving M . Each time the comparison y(ti+1 − b) ≥ y(tmaxM)
evaluates to true, an element is removed from M so there can only be ny such
comparisons that evaluate to true. When it evaluates to false we leave the loop
hence there are at most ny such comparisons that evaluate to false. Over the
whole execution Algorithm 3 uses at most 2 ·ny such value comparisons, making
its execution time linear in ny.

5 Complexity

To keep the discussion short, we restrict the syntax to primitive connectors
{true, xi ≥ 0,¬,∧, UI }. The complexity results of previous sections can be
summed up by stating the following: there exists a constant A such that for
any signals y, y′ and any connector ¬,∧ or UI , the corresponding Compute()
algorithm takes execution time smaller than A ·max{ny, ny′}.

We are interested in the time complexity of the robustness computation with
respect to both trace and formula size. A trace w = {x1, x2, ..., xk} will have for
size |w| := max{nx1 , nx2 , ...nxk

}, the maximum number of samples of its signals.
A formula ϕ is represented by its syntactical tree, in which each node is an STL
operator. A path in the syntactical tree has a length taken to be the number of
binary connectors ∧ and UI it contains. The height of the formula h(ϕ) is then
defined as maximum length for paths in the tree of ϕ. Note that our definition
of height ignores atoms and negations. The size of a formula |ϕ| will be simply
defined as the number of nodes in the tree of ϕ.

Theorem 3. There exists a constant d such that for any ϕ, w, the signal z :=
ρ(ϕ,w, .) has a number of samples nz ≤ dh(ϕ) · |w|

Proof. If we take y, y′ two signals and z be one of t 7→ min{y(t), y′(t)} or t 7→
sup

τ∈t+[a,b]

min{y′(τ), inf
[t,τ]

y}, then by immediate consequence of the existence of

linear time algorithms to compute such signals there exists d such that nz ≤
d ·max{ny, ny′}. We now prove the property by induction on the structure of ϕ.

For atomic formulas, the height is 0 while the robustness signal has a number
of sampling points at most the size of the input trace. For the negation, we
have h(¬ϕ) = h(ϕ) by definition while the number of samples is unchanged, we
conclude by the induction hypothesis. To finish we examine the induction step
for conjunction, the case of timed until being identical.
By definition we have h(ϕ ∧ ψ) = max{h(ϕ),h(ψ)} + 1. Let y, y′ and z be the
robustness signals of ϕ,ψ and ϕ∧ψ with respect to w. By induction hypothesis
we have ny ≤ dh(ϕ) · |w|, and ny′ ≤ dh(ψ) · |w|. From the introductory remark
nz ≤ d ·max{dh(ϕ) · |w|, dh(ψ) · |w|} = d · dmax{h(ϕ),h(ψ)} · |w| = dh(ϕ∧ψ) · |w|.

Corollary 1. The algorithm Robustness(ϕ,w) has time-complexity in
O(|ϕ| · dh(ϕ) · |w|).

Proof. Let ϕ be an arbitrary formula, and w an arbitrary trace. By Theorem 3,
each subformula ψ of ϕ has a robustness signal with at most dh(ψ) · |w| sampling
points, which is smaller or equal to dh(ϕ) · |w| in particular. Thus for each node
of the tree of ϕ the corresponding Compute() algorithm takes execution time at
most A ·dh(ϕ) · |w|. There are exactly |ϕ| such nodes, so that the main robustness
computation of ϕ with respect to w is achieved in time at most A · |ϕ| ·dh(ϕ) · |w|.

The next example will convince the reader that the robustness signal size can
indeed increase exponentially with the height of the formula.

Example 1. Let w0 be the trace with signal x, defined over [0, 8) and represented
by the sequence

(
ti, x(ti), dx(ti)

)
i<4

:= {(0, 0, 0), (5, 0,−1), (6,−1, 0), (7,−1, 1)}.
We define by induction the formula sequence (ϕk)k∈N by

ϕ0 := x ≥ 0 ϕk+1 := �[0, 1

2k+1] (♦[0, 1

2k−1] ϕk ∧ ♦[1

2k−1 ,
1

2k−2] ϕk)

0 1 2 3 4 5 6 7 8
−1

−0.5

0

ϕ0

0 1 2 3 4 5 6 7 8
−1

−0.5

0

&[0 ,2]ϕ0

0 1 2 3 4 5 6 7 8
−1

−0.5

0

&[2 ,4]ϕ0

0 1 2 3 4 5 6 7 8
−1

−0.5

0

&[0 ,2]ϕ0 ∧ &[2 ,4]ϕ0

0 1 2 3 4 5 6 7 8
−1

−0.5

0

ϕ1 = tu [0 , 12]
(&[0 ,2]ϕ0 ∧ &[2 ,4]ϕ0)

ϕ2
ϕ 3

Fig. 2. Some steps in the computation of ρ(ϕk, w0, .)

One can easily show (see Figure 2) that nk the number of samples of ρ(ϕk, w0, .)
is 2k · |w0|, while h(ϕk) = 3 · k, so that we have nk = (3

√
2)h(ϕk) · |w0|. Note that

this example entails the same behaviour for the size of the satisfaction signals
with respect to the formula height, so that traditional Boolean monitoring also
appears to suffer some level of exponential complexity to this respect.

6 Experiments

The proposed algorithm has been implemented in C++ and interfaced with the
STL parser of Breach. To plot Figure 3-(a), we computed the robustness estimate
for three formulas of size 1, 25 and 50 for random signals of size ranging from 104

to 105 samples. We could confirm that for each formula, the computation time
is linear with respect to the signal size. For Figure 3-(b), we fixed ny = 1000 and
generated 20 times 100 formulas of height h(ϕ) ranging from 1 to 20 and as many
signals of size ny. Our goal was to explore experimentally the result of Theorem 3.
For each pair of formula and signal, we computed the robust signal and the ratio
α = nz

ny between its samples size nz and the input signal size |w| = ny. We

first observe that for each value of h(ϕ), there is high variability of this ratio.
For instance, for h(ϕ) = 20, α can vary from 10−2 to more than 104. Secondly,
we observe that as predicted by Theorem 3, α appears to be bounded by some
exponential dh(ϕ), where we can roughly estimate d ' 1.7. Finally, the average
value of α on our experiment seems also to follow an exponential function of h(α),
though with a lower constant d ' 1.12. This seems to indicate that exponential
complexity is rather the rule than the exception. However, the conditions of
these experiments (random signals, formula maximizing heights) are likely to be

much more chaotic than for real systems and specifications. In particular, other
experiments (not reported here) suggest that “high” formulas resulting mostly
from large numbers of conjunctions do not exhibit an exponential behavior,
so that the complexity mostly arise from nested temporal operators. And we
believe that human-written specifications are not likely to contain deeply nested
temporal operators, as the intuition of such formula is generally hard to grasp.

0 2e4 4e4 6e4 8e4 10e4
0

0.5

1

1.5

2

2.5

3

Signal size ny

C
o
m
p
u
ta

ti
o
n
T
im

e
(s
)

|ϕ| = 1,Time ρ ' 2.34 × 10−6
n y

|ϕ| = 25,Time ρ ' 1.63 × 10−5
n y

|ϕ| = 50,Time ρ ' 2.45 × 10−5
n y

2 4 6 8 10 12 14 16 18 20

1e−2

1e−1

1

10

1e2

1e3

1e4

Formula height h(ϕ)

R
a
ti
o
n
z
o
v
e
r
|w

|
(L

o
g
sc

a
le
)

(a) Compution time against signal size (b) Size increase of robust signal against ‖ϕ‖.

Fig. 3. Experimental validation of the complexity results given in Section 5.

Next we compared the performance of our algorithm with that of the DP-
TaLiRo [FSUY12], based on a dynamic programming approach and implemented
in S-TaLiRo version 1.3. We compared the monitoring of ♦I and UI for signals
of various sizes and different time intervals I.3 The results are given in Table 1.
Except for signals of small size (100-1000), Breach is consistently faster by sev-
eral orders of magnitude. One partial explanation could be the fact that in the
framework of TaLiRo, the robust satisfaction of a predicate is obtained through
the computation of a distance function, which is done by the monitoring algo-
rithm, leading to an additional “hidden cost” [FSUY12]), whereas in our case,
this computation is separated from the monitoring.4 However, all the predicates
in our experiments are such that the distance function should be trivial to com-
pute so this alone cannot account for the difference in the performance. Also,
our results confirmed that the computation time for bounded time operators
does not depend on the size of the time interval, as in [Lem06], which is an
improvement over the complexity of the DP-TaLiRo algorithm.

3 Note that a comparison of nested formulas would make less sense since DP-TaLiRo
is implemented for fixed time-steps, thus the number of samples cannot vary from
one level to another.

4 In Breach, predicates are of the general form f(x) > 0 and here we considered that
f was computed beforehand to produce the signals y(t) = f(x(t)) as inputs to our

Computation times (s) of robustness estimates for ♦I and UI

DP-Taliro Breach

ny 1e2 1e3 1e4 1e5 1e2 1e3 1e4 1e5

♦[1,2] 0.001091 0.00278 0.176 16.6 0.00312 0.00302 0.004 0.0193
♦[1,11] 0.000689 0.00304 0.212 20.4 0.00286 0.00262 0.00391 0.0173
♦[1,21] 0.000713 0.00334 0.253 24.3 0.00268 0.00269 0.00412 0.0185
♦[1,31] 0.000707 0.0038 0.278 27.3 0.00302 0.00281 0.00409 0.0208

U[1,2] 0.523 4.72 46.8 486 0.00577 0.00766 0.0268 0.228
U[1,11] 0.482 4.55 47.1 493 0.00567 0.00743 0.0269 0.223
U[1,21] 0.468 4.59 46.2 499 0.00545 0.00722 0.0268 0.229
U[1,31] 0.462 4.7 46.7 505 0.00567 0.0073 0.0274 0.222

Table 1. Experimental comparison with DP-Taliro algorithm.

7 Discussion and Future Work

We developed a new algorithm computing robust satisfaction of STL formulas
by piecewise-linear signals. The algorithm is linear in the size of the signal as
measured by the number of sampling points. The algorithm extends to dense
time the algorithm of [Lem06] for maintaining the maximal value of a numerical
sequence over a shifting window and its implementation confirms its theoretical
properties. Our implementation could handle signals with millions of samples and
formulas with tens of operators. It remains to be seen whether the worst-case
exponential growth in the size of the formula occurs for real-life formulas rather
than the random formulas we experimented with. Another important direction
to investigate would be the design of an online variant of our algorithm, which
is by nature offline.

References

ALFS11. Y. Annpureddy, C. Liu, G.E. Fainekos, and S. Sankaranarayanan. S-taliro:
A tool for temporal logic falsification for hybrid systems. In TACAS, 2011.

CGP99. E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
1999.

DFG+11. A. Donzé, E. Fanchon, L. M. Gattepaille, O. Maler, and P. Tracqui. Robust-
ness analysis and behavior discrimination in enzymatic reaction networks.
PLoS ONE, 6(9), 2011.

DM10. A. Donzé and O. Maler. Robust satisfaction of temporal logic over real-
valued signals. In FORMATS, pages 92–106, 2010.

DMB+12. A. Donzé, O. Maler, E. Bartocci, D. Nickovic, R. Grosu, and S. Smolka.
On temporal logic and signal processing. In ATVA, 2012.

algorithm. Note that this is slightly more general than TaLiRo as f can implement
a distance function [JDDS13]).

Don10. A. Donzé. Breach, a toolbox for verification and parameter synthesis of
hybrid systems. In CAV, pages 167–170, 2010.

DT04. D. D’Souza and N. Tabareau. On timed automata with input-determined
guards. In FORMATS/FTRTFT, 2004.

FP09. G.E. Fainekos and G.J. Pappas. Robustness of temporal logic specifications
for continuous-time signals. Theoretical Computer Science, 410(42), 2009.

FSUY12. G.E. Fainekos, S. Sankaranarayanan, K. Ueda, and H. Yazarel. Verification
of automotive control applications using s-taliro. In ACC, 2012.

JDDS13. Xiaoqing Jin, Alexandre Donzé, Jyotirmoy Deshmukh, and Sanjit Seshia.
Mining requirements from closed-loop control models. In HSCC’13, 2013.

JKN10. K.D. Jones, V. Konrad, and D. Nickovic. Analog property checkers: a
DDR2 case study. Formal Methods in System Design, 36(2), 2010.

Lem06. D. Lemire. Streaming maximum-minimum filter using no more than three
comparisons per element. CoRR, abs/cs/0610046, 2006.

MDMF12. N. Mobilia, A. Donzé, J.-M. Moulis, and E. Fanchon. A model of the cellular
iron homeostasis network using semi-formal methods for parameter space
exploration. In HSB, 2012.

MN04. O. Maler and D. Nickovic. Monitoring temporal properties of continuous
signals. In FORMATS/FTRTFT, pages 152–166, 2004.

MN12. O. Maler and D. Nickovic. Monitoring properties of analog and mixed-
signal circuits. Software Tools for Technology Transfer, 2012.

MNP08. O. Maler, D. Nickovic, and A. Pnueli. Checking temporal properties of
discrete, timed and continuous behaviors. In Pillars of Computer Science,
2008.

MP91. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag New York, 1991.

MP95. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag New York, 1995.

Nil86. N.J. Nilsson. Probabilistic logic. Artificial intelligence, 28(1):71–87, 1986.
NM07. D. Nickovic and O. Maler. AMT: A property-based monitoring tool for

analog systems. In FORMATS, pages 304–319, 2007.
Pnu77. A. Pnueli. The temporal logic of programs. In Proc. 18th Annual Sympo-

sium on Foundations of Computer Science (FOCS), pages 46–57, 1977.
QS82. J. P. Queille and J. Sifakis. Specification and Verification of Concurrent

Systems in CESAR. In 5th Int. Symp. on Programming, 1982.
RBFS08. A. Rizk, G. Batt, F. Fages, and S. Soliman. On a continuous degree of

satisfaction of temporal logic formulae with applications to systems biology.
In CMSB, 2008.

Zad65. L. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

	Efficient Robust Monitoring for STL
	Alexandre Donzé1, Thomas Ferrère2, Oded Maler2

