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ABSTRACT
The task of a monitor is to watch, at run-time, the execution of a re-

active system, and signal the occurrence of a safety violation in the

observed sequence of events. While finite-state monitors have been

studied extensively, in practice, monitoring software also makes use

of unbounded memory. We define a model of automata equipped

with integer-valued registers which can execute only a bounded

number of instructions between consecutive events, and thus can

form the theoretical basis for the study of infinite-state monitors.

We classify these register monitors according to the number k of

available registers, and the type of register instructions. In stark

contrast to the theory of computability for register machines, we

prove that for every k ≥ 1, monitors with k + 1 counters (with

instruction set ⟨+1,=⟩) are strictly more expressive than monitors

withk counters. We also show that adder monitors (with instruction

set ⟨1,+,=⟩) are strictly more expressive than counter monitors, but

are complete for monitoring all computable safety ω-languages for
k = 6. Real-time monitors are further required to signal the occur-

rence of a safety violation as soon as it occurs. The expressiveness

hierarchy for counter monitors carries over to real-time monitors.

We then show that 2 adders cannot simulate 3 counters in real-time.

Finally, we show that real-time adder monitors with inequalities

are as expressive as real-time Turing machines.

CCS CONCEPTS
• Theory of computation → Quantitative automata; Logic and
verification; • Computer systems organization→ Real-time sys-
tem specification;
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1 INTRODUCTION
The safety of reactive systems [27] can be guaranteed through

the use of several techniques, such as rigorous design principles,

systematic testing, or formal verification. Run-time monitoring is

one such technique [26]. It conjoins the system with a module

dedicated to ensuring that the sequence of events produced by the

system is correct. The monitor works on-line, and upon detection

of incorrect behavior can react, e.g., by interrupting the system.
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In theoretical terms, any monitor recognizes a safetyω-language
[39]. Safety languages are characterized by the fact that an invalid

sequence of events can always be identified by a finite prefix. An

important subclass is that of ω-regular safety languages. These lan-

guages can be recognized by deterministic finite automata without

acceptance condition, and their applications in formal verification

and monitoring have been extensively studied, see e.g., [7, 17, 40].

Many interesting properties of reactive systems are notω-regular.
For instance, consider a server that can receive requests with event

a, issue grants with event b, be activated and deactivated with event
c . Propertyψ1 of this system is that while active, every grant must

be matched by an earlier request. It corresponds to the language

of ω-words in which every finite subword beginning on an odd

occurrence of c and ending before the next occurrence of c features
more a’s than b’s. Property ψ1 is evidently not finite-state due to

a potentially unbounded number of pending requests. Real-life

examples of properties of this kind are plenty.

We propose an automaton model that captures the task of moni-

toring safety properties that lie beyond ω-regular. In practice, run-

time monitors are programs that have access to a large, potentially

unbounded memory unit. Our machine model uses integer-valued

registers as for the register machines from computability theory

[29, 38]. This is particularly suited to model the monitoring of safety

properties expressed in terms of some quantities involved in the

computation of the observed system, such as time, energy, or other

functional indicators. The resulting notion of monitorability is very

different from computability, where two counter registers suffice

for Turing computation [30].

The register monitor shown in Figure 1 recognizes propertyψ1
of our example. It runs as long as the property is satisfied, and

halts in case of violation (this is indicated by no transitions being

available). Deactivating the server causes pending requests to be

a
a

x ← x + 1

b, x > 0

x ← x − 1

c
x ← 0

c

Figure 1: A register monitor for propertyψ1.

dropped, which is reflected by the update x ← 0. Requests and

grants are processed using increments and decrements.

Consider now more powerful arithmetic operations such as ad-
dition. Propertyψ2 of the server requires that the average over time

of the number of pending requests never exceeds 5. Requests are as-

sumed to be granted in the order with which they arrive. A register

monitor recognizing this safety property is shown in Figure 2. The

sum of pending requests is maintained in a register r with additive
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a

a, r ≤ 5t
r ← r + x

x ← x + 1, t ← t + 1

b, r ≤ 5t
r ← r + x

x ← x − 1, t ← t + 1

c
x ← 0

c

Figure 2: A register monitor for propertyψ2.

updates r ← r + x . Currently pending requests x are counted as

previously, and time is counted in t .
Observe that monitors of both Figure 1 and Figure 2 halt in real

time, in the sense that every safety violation causes the monitor to

halt as soon as it occurs. This is not strictly required by our defini-

tions, we also allow for a monitor to delay its verdict as necessary

to complete its computation.

Consider a variant of our server example, in which every request

and grant is preceded by a key communicated in binary form using

letters d and e; the key is broadcast during the inactive period

of the server. Property ψ3 requires that every grant and request

use the key set during the previous inactive period of the server.

A register monitor recognizing this safety property is shown in

Figure 3. During a period of inactivity, the monitor uses register x
to store the key and register y to store its length. During an active

period, the monitor uses alternate registers x ′ and y′ to encode

every key. The length of the key being read should not exceed that

of the correct key (y′ ≤ y), and upon occurrence of a request or

grant the two keys should match (x ′ = x ). The monitor of Figure 3

halts in linear-time in the worst case, it does not halt on the first

erroneous bit. This should be sufficient in practice.

d, x ← 2x
y ← y + 1

e, x ← 2x + 1
y ← y + 1

d, y′ ≤ y
x ′ ← 2x ′
y′ ← y′ + 1

e, y′ ≤ y
x ′ ← 2x ′ + 1
y′ ← y′ + 1

a ∪ b, x = x ′ ∧ y = y′
x ′ ← 0

y′ ← 0

c
x ← 0

y ← 0

c
x ′ ← 0

y′ ← 0

Figure 3: A register monitor for propertyψ3.

In this work we mainly focus on monitors that halt in real time,

also called real-time monitors for short. We obtain the following

results.

Counter monitors are defined by considering the instruction set

⟨+1,=⟩. We prove that (k+1)-counter monitors are more expressive

thank-countermonitors for everyk ≥ 1. This holds both for general

monitors and for the class of monitors that halt in real time. We

also show that in counter monitors, resetting variables to zero as

in Figure 1 is equivalent to copying variables, and is an essential

operation. In general, copyless counter monitors are less expressive.

Adder monitors are defined by considering the instruction set

⟨1,+,=⟩. Adder monitors with 6 registers are complete for the class

of Turing computable safety languages, so unlike the counter hier-

archy, the adder hierarchy collapses at k = 6. This is because using

2 adders, the pending part of an input ω-word can be encoded in

real time, and using a further 4 counters an arbitrary Turing compu-

tation can be done asynchronously in parallel. We conjecture that

on the contrary the real-time adder hierarchy does not collapse at

any k . As a first step in this direction, we show that in real-time

monitors, 3 counters are more powerful than 2 adders.

Linear register monitors are then defined by considering linear

arithmetic updates and inequality tests ≤. We obtain that k counters

can be simulated by 4 linear registers in real time, for any k ≥ 0.

We finally define polynomial register monitors by enabling the mul-

tiplication operation. This seemingly powerful model still cannot

recognize in real time the language of words in which “no number

repeats”, consisting of words #w1#w2#w3# . . . in whichwi , w j for

every i , j. The above language could specify a security protocol

where every key should be unique, also known as a nonce. It is prov-
ably not recognizable by real-time polynomial register monitors.

When the numbers are presented in unary, the resulting language

is recognizable by a linear register monitor in real time.

Related Work
Register machines were introduced in [29] as an abstract model

of computation. The notion of real-time computation was, to our

knowledge, first studied in [41]. Real-time Turing machines were

defined and investigated by [33], showing that 2-tape machines

are more expressive than 1-tape machines. A language that is not

real-time recognizable was described explicitly for the first time in

[20]. Real-time computation in general was also studied in [35].

Defining real-time counter machines as language recognizers

and sequence generators, [14, 15] characterize the power of counter

machines relative to Turing machines and establish a hierarchy of

k + 1 versus k real-time counters. A hierarchy of k + 1 versus k
tapes for real-time Turing machines was proved in [1]. Following

the introduction of the information-theoretic approach by [31], this

result was extended to other models of on-line computations [28].

Formal verification problems using temporal logic and arithmetic

registers were surveyed in [9]. Reachability in register machines

with polynomial updates was studied by [13], and is undecidable for

more than one register. The use of formal languages in the context

of monitoring was advocated by [16]. Due to the predominance of

linear temporal logic in formal verification, the study of formal mon-

itoring has largely been focused on finite-state languages [26]. The

field of run-time verification [25] is also concerned with software

engineering issues, which need not involve real-time constraints.

A notable exception is the model proposed by [8] for on-line moni-

toring with Boolean and integer-valued stream variables.

The term register automata sometimes refers to computational

models with register variables ranging over an infinite input al-

phabet, see [10, 19, 22]. The use of register automata for run-time

verification was studied in [18]. In [34] was proposed a monitor

model consisting of automata in which registers, ranging over input

values, are bound by first-order quantifiers. We refer the reader to

[21] for a survey of the monitoring of data languages. Unlike all of

the above, in this work we assume a finite input alphabet of events.
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Automata with registers were also defined as studied in [3] as

a generalization of weighted automata. We borrow the notion of

copyless registers from [3]. The extension of cost registers to arith-

metic operations was studied in [6]. Cost-register automata also aim

at providing foundations for regular stream processing languages

[4]. The application of stream processing to network monitoring

was considered in [42]. In general, the work on stream processing

focuses on the algebraic specification, and efficient compilation of

on-line stream processors. We instead study the notion of infinite-

state monitorability.

To our knowledge, this paper is the first systematic theoretical

study of register machines as on-line and real-time monitors.

2 DEFINITIONS
Let Σ be a finite alphabet of events. The length of a finite word

w ∈ Σ∗ is denoted |w |. Given words u ∈ Σ∗ and w ∈ Σ∗ ∪ Σω , we
write u ≺ w , and say that u is a (strict) prefix of w , when there

exists v with |v | > 0 such that uv = w .

2.1 Safety
A word u ∈ Σ∗ is a bad prefix for some language L ⊆ Σω when for

all words w ∈ Σω , if u ≺ w then w < L. A language L ⊆ Σω is a

safety language when for allw < L there exists a bad prefix u ∈ Σ∗

for L with u ≺ w . These definitions conform to [2].

Safety constitutes a privileged class of properties, for which a

monitor is able to produce a permanent violation verdict, when a

bad prefix is observed. Note that in general other kinds of properties

can be considered to be amenable to monitoring [11]. Allowing

such properties immediately raises the question of what type of

verdict or reaction is expected of a monitor, since a seemingly bad

prefix can sometimes be prolonged into a satisfying execution. In

this paper we restrict our attention to safety properties.

Not all safety properties ought to be considered monitorable, for

the simple reason that they may not be computable in a reasonable

sense. Since we work with ω-words, we will naturally consider

non-terminating computations and take the following definition:

A safety language L is said to be computable when there exists a

Turing machine that halts precisely on the infinite words not in L.

2.2 Register Monitors
Take X to be a set of integer variables, called registers. Let T be a

set of functions and relations over the integers, called instruction
set. An update is a mapping from variables to terms over T . A test
is a conjunction of atomic formulas over T and their negation. The

set of updates and tests on variables X are respectively denoted

Γ(X ) and Φ(X ). For any register valuation v : X → Z and update

γ ∈ Γ(X ), we define the updated valuation v[γ ] : X → Z by letting

v[γ ](x ) = v (γ (x )) for all x ∈ X . For any ϕ ∈ Φ(X ) we write v |= ϕ
when ϕ holds true under valuation v .

Definition 2.1 (Monitor). A (deterministic) register monitor is a
tuple (Σ,X ,Q, s,∆) where Σ is an alphabet, X is a set of registers,

Q is a set of control locations, s ∈ Q is the initial location, and

∆ ⊆ Q × Σ × Φ(X ) × Γ(X ) × Q is a set of edges such that for

every (q,σ ,ϕ1,γ1, r1) , (q,σ ,ϕ2,γ2, r2) ∈ ∆ the formula ϕ1 ∧ ϕ2 is
unsatisfiable. The sets Σ,X ,Q,∆ are assumed finite.

Let A = (Σ,X ,Q, s,∆) be a register monitor. A configuration
of A is a pair (q,v ) of location q ∈ Q and valuation v : X → Z.

Let σ ∈ Σ be an event. A transition
σ
−→ of A is a relation between

configurations defined by (q,v )
σ
−→ (q′,v ′) iff v ′ = v[γ ] and v |= ϕ

for some edge (q,σ ,ϕ,γ ,q′) ∈ ∆. A run of automatonA over some

wordw = σ1σ2σ3 . . . is a valid sequence of transitions

(q0,v0)
σ1
−−→ (q1,v1)

σ2
−−→ (q2,v2)

σ3
−−→ . . .

labeled byw where q0 = s and v0 (x ) = 0 for all x ∈ X . An infinite

word w is accepted by A when A has a run over w . We say that

A errs over a finite word w when A had no run over w . We call

language ofA and denote byL(A) the set of infinite words accepted
by A.

Let τ : N→ N be a monotone function. A register monitor A is

said to halt in time τ when for every bad prefix w of L(A), there
exists a suffixv ⪰ w such that |v | ≤ τ ( |w |) andA errs onv . We say

thatA ′ simulatesA in time τ ′ when L(A) = L(A ′) and for every τ
such thatA halts in time τ ,A ′ halts in time τ ′ ◦τ . MonitorsA and

A ′ are said to be time-equivalent when they simulate each other

in real time. Here and throughout this paper, in real time means in

time n 7→ n. Observe that two monitors are time-equivalent iff they

err on the same set of prefixes.

2.3 Closure Properties
Like the class of safety languages that contains it, the class of

register monitorable languages is closed under positive Boolean op-

erations. This is easily shown using standard product constructions

over deterministic automata.

Theorem 2.2. For any instruction set T and function τ , the set of
languages recognizable by register monitors in time τ is closed under
union and intersection.

The set of register monitorable languages is obviously not closed

under complement. Over the alphabet {a,b}, the language aω is

register monitorable but its complement is not safety. For a given

instruction set T and function τ , the set of languages monitorable

in time τ is usually not closed under projection.

Register monitors have a finite set of edges, so that any given

monitor only executes boundedly many instructions per input sym-

bol. Each register instructions can be seen as an oracle, taking

constant computation time. Let us call size of a term the height of

its syntax tree.

Definition 2.3 (Rate). A register monitor has rate c when the size

of terms it features is at most c .

The rate of a monitor is intuitively related to its maximum num-

ber of instructions per test or update.

Define register ϵ-monitors similarly as register monitors, but with

transitions taken in Q × (Σ ∪ {ϵ }) × Φ(X ) × Γ(X ) ×Q and terms of

size at most 1. Silent transitions, labeled with ϵ , do not consume

any input symbol and can occur at arbitrary positions in a run.

Definition 2.4 (Delay). A register ϵ-monitor has delay c when its

maximum number of consecutive silent transitions is at most c − 1.

Theorem 2.5. Let c be a positive integer. Register ϵ-monitors with
delay c and register monitors with rate c are time-equivalent for-
malisms.
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3 FINITE-STATE MONITORS
A register monitor with an empty instruction set, or equivalently,

without registers, is called a finite-state monitor. They constitute a

broad class of monitors which capture well-studied properties.

Example 3.1. Consider the language (a ∪ba)ω over events a and

b, consisting of infinite words in which there are no consecutive b
events. This safety language can be recognized by the finite-state

monitor of Figure 4.

b

a

a

Figure 4: A finite-state monitor for the language (a ∪ ba)ω .

Finite-state monitors correspond to the subclass of Büchi au-

tomata with trivial acceptance condition, also known as safety
automata. The use of finite and Büchi automata as a monitor model

was considered before in multiple related research efforts, see [16]

in particular. For the case of safety languages, we make the follow-

ing observation:

Theorem 3.2. For any finite-state monitor A with n states, there
exists a real-time finite-state monitor A ′ with n′ ≤ n states equiva-
lent to A.

Proof. We say that a location q ofA is doomed if no cycle in the

transition graph of A is reachable from q. Removing all doomed

states of A yields A ′. One can easily check that L(A) = L(A ′)
(a prefix w is bad for L(A) iff w is bad for L(A ′)) and that A ′ is

real-time (A ′ errs on all its bad prefixes). □

This contrasts with the situation of general ω-regular languages,
including co-safety ones. The construction of a recognizer of bad

prefixes from a nondeterministic Büchi automaton involves an

unavoidable exponential increase in the number of states [24], even

when using nondeterminism.

The applications of finite automata for monitoring and run-time

verification are numerous and well-studied, see [7, 17] in particular.

The special status of ω-regular languages is related to the decidabil-
ity of their inclusion problem, upon which many formal verification

results rely. For monitoring purposes, more expressive formalisms

can and should be investigated.

4 COUNTER MONITORS
Definition 4.1 (Counter Monitors). A register monitor with the

instruction set ⟨+1,=⟩ is called a counter monitor.

Let us give a typical example of safety language which is counter

monitorable, but not finite-state monitorable. Given σ in some al-

phabet Σ, andw ∈ Σ∗, we denote by |w |σ the number of occurrences

of event σ in the wordw .

Example 4.2. Let Σ = {a,b}, and consider the language

L1 = {w ∈ Σ
ω | ∀u ≺ w, |u |a ≥ |u |b }.

If a stands for a request and b for a grant, language L1 requires that
every grant is matched by an earlier request (but not all requests

may be granted). This language is recognized by the two-counter

automaton of Figure 5, which counts occurrences of a in x and

occurrences of b in y, and runs as long as x ≥ y.

b, y + 1 , x
y ← y + 1

a
x ← x + 1

a
x ← x + 1

b, y + 1 = x
y ← y + 1

Figure 5: A counter monitor for the language L1.

4.1 Counter Hierarchy
It was shown by [15] that in counter automata over finite words,

every new counter creates additional expressive power. We show

that this result carries over to our counter monitor model. For this

we take the following language Lk as a witness. This language gen-

eralizes L1 of Example 4.2 by taking an alphabet Σk = {0, 1, . . . ,k }
of k + 1 letters, and letting

Lk = {w ∈ Σ
ω
k | ∀i < k,∀u ≺ w, |u |i+1 ≥ |u |i }.

It consists of all words in which every occurrence of event i + 1
must be matched by the occurrence of an earlier event i . For an
alphabet with k + 1 letters, exactly k + 1 counters are needed.

Let L be a language over Σ. Prefixes u1,u2 ∈ Σ∗ are said to

be equivalent relative to L, denoted u1 ∼L u2, when u1w ∈ L iff

u2w ∈ L for all infinite wordsw ∈ Σω . Let A be a counter monitor

over the alphabet Σ. Configurations (q1,v1) and (q2,v2) are said

to be equivalent when (q1,v1)
u
−→ (q,v ) iff (q2,v2)

u
−→ (q,v ) for

all finite words u ∈ Σ∗. Here by (q,v )
u
−→ (q′,v ′) we denote a

sequence of transitions from (q,v ) to (q′,v ′) and labeled with u.

Theorem 4.3. For every k ≥ 1, there exists a real-time (k + 1)-
counter monitor without any equivalent k-counter monitor.

Proof. Let us fix a number k ≥ 1 of registers, and consider the

language Lk . Notice that Lk is recognizable by a (k + 1)-counter
monitor constructed similarly as for Example 4.2. We assume to-

wards a contradiction that Lk is also recognizable by a k-counter
monitor, and show that the number of inequivalent prefixes of

length up to n relative to Lk is strictly greater than the number of

possible configurations that a k-counter monitor can reach after

reading a prefix of length up to n.
A simple condition suffices to characterize the equivalence rel-

ative to Lk : it holds that u1 ∼Lk u2 iff there is an integer p for

which |u1 |i = |u2 |i + p holds for all 0 ≤ i ≤ k . We represent each

equivalence class of ∼Lk by a string u such that |u |i = 0 for some i .
Then, the number of equivalence classes of prefixes of length up to

n, computed as a difference of two binomial coefficients, is bounded

from below as follows:(
n + k + 1

k + 1

)
−

(
n

k + 1

)
>

(n + 1)k+1 − nk+1

(k + 1)!
>

nk

k!
. (1)
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• L1
• L2

• Lk−1

•LP

CM

k -CM
.
.
.

3-CM

2-CM

1-CM

=
FSM

Figure 6: Counter hierarchy. FSM and CM stand for finite-
state monitor and counter monitor, respectively.

For configurations of counter monitors we observe a similar

condition: (q1,v1) and (q2,v2) are equivalent iff q1 = q2 and there

exists an integer p for which v1 (x ) = v2 (x ) + p holds for all x ∈ X .

A configuration (q,v ) denotes an equivalence class if v (x ) = 0

for some x ∈ X . Now, consider an arbitrary k-counter monitor

withm locations and rate c . The number of equivalence classes of

configurations after it reads a prefix of length up to n is computed

similarly and bounded from above as follows:

m

[(
cn + k

k

)
−

(
cn

k

)]
< m



(cn + k )k

k!
−

(cn − k + 1)k

k!


<

m(2k − 1)

(k − 1)!
(cn + k )k−1.

(2)

For sufficiently large n, the lower bound in (1) exceeds the upper

bound in (2): There are more inequivalent prefixes of length up to n
relative to Lk than configurations a k-counter monitor can possibly

reach after reading such prefixes. Thus no k-counter monitor can

recognize Lk . □

In Theorem 4.3, the k-counter simulator is not required to halt in

real time. Observe that there exist languages counter-monitorable

but not in real time. Such languages can be found in the form of

LS =
⋃
n∈S a

nbω ∪aω where S is a computable set with complexity

more than exponential. For example, take P to be the set of valid

Presburger arithmetic sentences given in binary notation. Since the

complexity of deciding Presburger arithmetic is doubly exponential,

it follows that LP is not real-time counter monitorable. This is

because over the prefix an , computations are linear-time relative

to n (exponential-time relative to the length of n). The language LP
can be monitored by reading n over the prefix an and deciding the

validity of formula number n over a suffix bm form exponential in

n (doubly-exponential time in the length of n).
The results of this subsection are summarized in Figure 6.

4.2 Trading Rate for Locations
By Theorem 4.3 the number of registers in a counter monitor cannot

be reduced through increasing its rate or its number of locations.

On the contrary, for fixed number of registers, the rate can always

be reduced at the expense of increasing the number of locations.

This can be shown as an immediate application of the “counter com-

pression” idea of [14] that we recall for the sake of completeness.

Theorem 4.4. Every k-counter monitor withm locations and rate
c > 1 has a time-equivalent k-counter monitor withmck locations
and rate 1.

Proof. Let A = (Σ,X ,Q, s,∆) be a counter monitor with X ={
x1, . . . ,xk

}
and rate c . We construct a time-equivalent counter

monitor B = (Σ,X ′,Q ′, s ′,∆′) with rate 1 by delaying the updates

and remembering them using the finite state control. Let X ′ ={
y1, . . . ,yk

}
, and Q ′ = Q × {0, . . . , c − 1}k with initial state s ′ =

(s, 0, . . . , 0). During a run, we store in yi the integer division of xi
by c , and use the additional component {0, . . . , c − 1}k in locations

of Q ′ to store the remainders. Formally, we maintain between each

pairs of configuration of A and A ′ the invariant xi = cyi + di
where di is the (i + 1)st component of the location, for all registers

i ∈ {1, . . . ,k }. We proceed to construct the set of edges ∆′. For each
original edge (q,σ ,ϕx ,γ ,q

′) ∈ ∆ and values of d1, . . . ,dk , we add
to ∆′ an edge from (q,d1, . . . ,dk ) to (q′,d ′

1
, . . . ,d ′k ) labeled σ with

test ϕy and update as follows. For a < c −dj , an update xi ← x j +a
translates as yi ← yj . For a ≥ c −dj , it translates as yi ← yj + 1. In
both cases we let r ′i ≡ r ′j + a mod c . The test ϕy is obtained from

ϕx by replacing every atomic formula xi + a = x j + b by yi = yj if
di + a = dj + b, by yi = yj + 1 if di + a = dj + b + c , by yi + 1 = yj
if di + a + c = dj + b, and by ⊥ otherwise. □

Since k locations can be emulated by a single register with rate

k , we have that in a counter monitor, locations and rate are inter-

changeable resources.

4.3 Counter Variants
We show in the following that copying can be seen as some form of

reset. Let us first observe that inequality tests do not increase the

expressive power of counter monitors. Without loss of generality,

assume a rate of 1. The changes of truth status of an inequality

will always be preceded by an equality becoming true and/or an

increment of one of its variables. Some additional state component

thus suffices to track the current truth value of the inequality.

Theorem 4.5. Register monitors with instruction set ⟨+1,=⟩ and
⟨+1, ≥⟩ are equally expressive.

As for counter machines, we also obtain equivalent definitions

by considering registers that are incremented, decremented, and

tested for zero. Every register x in a monitor with instruction set

⟨−1,+1,=0⟩ can be counted as the difference of a positive part

x+ and a negative part x−, and has value zero when x− = x+.
Conversely the difference x − y between every pair of registers x
and y in a monitor with instruction set ⟨+1,=⟩ can be counted in

some register rx−y , such that rx−y = 0 iff x = y. Thus:

Theorem 4.6. Register monitors with instruction set ⟨+1,=⟩ and
⟨−1,+1,=0⟩ are equally expressive.

The above simulations are real-time, and in the case of Theo-

rem 4.6 preserve the rate and number of locations.

A significant difference between our model and standard counter

automata is the ability to duplicate registers. A copy is an update

γ featuring a variable y ∈ X that appears more than once in γ (X ).
In other words, a copy update features a variable which occurs

on the right-hand side of more than one assignment. Let us give
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an example of counter monitor that makes essential use of a copy

update.

Example 4.7. Let Σ′ be the alphabet of events obtained from

Σ = {a,b} by letting Σ′ = Σ∪ {#}. Consider the following language:

L′
1
= L1 ∪

{
w ∈ Σ′ω | ∀u ∈ Σ′∗,∀v ∈ Σ∗,u#v ≺ w ⇒ |v |a ≥ |v |b

}
where L1 is the language of Example 4.2. It describes words such

that every occurrence of event b is matched by an earlier occur-

rence of event a after the last event #. A simple modification of the

automaton of Figure 5 enables to recognize the language L′
1
. For

this we simply add two edges labeled #,x ← y going back to the

initial state.

Using the terminology of [3], we call copyless a register monitor

without copy updates. We now show that removing the ability to

copy results in a loss of expressiveness.

Suppose, towards a contradiction, the existence of a copyless

counter monitor A with k registers, m locations and such that

L(A) = L′
1
. It is easy to check that the copyless quality of a monitor

is preserved by the translation of Theorem 4.6. Thus we assume

without loss of generality that A has instruction set ⟨−1,+1,= 0⟩.

We further assume with Theorem 4.4 that A has rate 1.

Lemma 4.8. For any d ∈ N and initial configuration (q0,v0) there
exists an integer n ≤ (2d+1)k +1 such thatA has a run from (q0,v0)
on an ending in a configuration (qn ,vn ) which satisfies |v (x ) | > d
for at least one register x ∈ X .

Using the above lemma, we show that there is no copyless

counter monitor to recognize L′
1
by constructing a prefix that is

misclassified by A as described above. It will follow that:

Theorem 4.9. Copyless counter monitors are strictly less expressive
than counter monitors.

Proof. We assume the existence of a register monitor A with

k registers andm locations that recognizes L′
1
and satisfying the

assumptions above. For technical convenience we also assumem ≥
2. Informally, we say that a register x ∈ X is inactive if its absolute
value exceeds a bound such that it cannot be restored back to 0 for

a certain class of inputs. Note that whenA has one of its k registers

inactivated, it is equivalent to a monitor with k − 1 registers over
that class of inputs.

The idea is to construct a prefix u in such a form that the run of

A over u results in a configuration where all registers hold a value

above 2m. Then A cannot process all continuations of u correctly,

since it can distinguish inequivalent prefixes of length 0 ≤ l ≤ 2m
over the alphabet {a, #} by using its finite state memory consisting

ofm locations while blindly updating its counters.

The string u will be of the form uk#uk−1# . . .u2#u1 where ui =
ani . We choose each ni such that after reading uk# . . .uk−i−1# at
least i registers are inactive. For this we rely on Lemma 4.8. Each

upper bound 2m(2di +1)
ki +1 for inactivity depends on the number

ki of registers and the length di of the remaining part of the prefix.

Therefore, we choose d1 = 2m + 1 as previously indicated, and

construct u from right to left.

Considering u1 we have d1 = 2m + 1 and k1 = 1. By Lemma 4.8

we can choose n1 such that n1 ≤ 2m(2d1 + 1)k1 + 1 = m1. We

ensure that the single active register becomes inactive after reading

u1 by choosing the appropriate n1 ≤ m1. Then, for u2 we require

d2 = m1 + d1 + 1, k2 = 2, and n2 ≤ m2 = 2m(2d2 + 1)k2 + 1. By

induction on i we can obtain di =mi−1 + di−1 + 1 and ni ≤ mi =

2m(2di + 1)i + 1 satisfying the desired assumptions. At the ith
separator A behaves as a (k − i )-counter monitor Ai . Applying

Lemma 4.8 on Ai for the next separator we obtain that another

register becomes inactive. This gives us the sequence u.
We now consider suffixes of the formuw wherew is a finite word

in the language F =
⋃

2m
l=0 (a∪#)

l
. There exists a pair of special words

in F of the formw = w1#w2# . . . #wl andw
′ = w ′

1
#w ′

2
# . . . #w ′l with

w j ,w
′
j ∈ a

∗
for 1 ≤ j ≤ l satisfying the following condition: there

exists 1 ≤ i < l and a non-empty wordv such that (1)wi = w
′
iv and

w ′l = wlv ; (2) the monitorA is in the same location before and after

reading v at such positions in uw and uw ′; (3) for all 1 ≤ j < l with
j , i we havew j = w

′
j . Then since counter values are larger than

2m after reading u, the runs of A over uw and uw ′ are the same

except for one extra loop over v at positions i and l , respectively.
Additive counter updates are commutative, so thatA is in the same

configuration after reading uw and uw ′. But u#wbp#aω ∈ L′
1
while

u#w ′bp#aω < L′
1
for p = |wl |, so that A

′
does not recognize L′

1
, a

contradiction. □

Definition 4.10 (Reset). We call reset-counter monitor a register
monitor with the instruction set ⟨0,+1,=⟩.

The reset operation can replace the ability to copy without any

loss of expressive power. To show this, we proceed by translating a

counter monitor in two steps using a simple variant of Theorem 4.6.

The first step applies the translation and yields a copyless monitor

with instruction set ⟨0,+1,−1,=0⟩. For this, it suffices to notice

that duplicating a value in unsigned counters with x ← z,y ← z
has the effect of a reseting to zero in signed counters, emulated

with rx−y ← 0. The second step applies the reverse translation and

yields a copyless monitor with instruction set ⟨0,+1,=⟩.

Theorem 4.11. For any counter monitor, there exists a time-
equivalent copyless reset-counter monitor.

5 ADDER MONITORS
We now enhance counter monitors with the ability to increment

the content of one register by the content of another.

Definition 5.1 (Adder Monitors). A register monitor with the in-

struction set ⟨1,+,=⟩ is called an adder monitor.

5.1 Expressiveness
The ability to compute sums of registers gives adder monitors

dramatically more expressive power, and notably the ability to

encode the prefixes of a word in real time.

Example 5.2. Let Σ′ be an alphabet of events defined by letting

Σ′ = Σ ∪ {#}, where Σ = {a,b} as previously. Consider the safety
languageM1 =

⋃
w ∈Σ∗ #(w#)ω ∪ #(w#)ωΣω . It consists of infinite

sequences starting with # in which one unique finite word over Σ
repeats, each consecutive pair of occurrences separated by #. The

languageM1 is recognized by the real-time adder monitor with 2

registers of Figure 7. The part of a word before a separator, if any,

is encoded in x using a binary representation. Later occurrences of
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finite words are encoded in y. At every separator the encoding of

the two words must match.

#

x ← 1

a
x ← 2x

b
x ← 2x + 1

a
y ← 2y

b
y ← 2y + 1

#, x , y
y ← 1

#

y ← 1

Figure 7: An adder monitor recognizing languageM1.

It is easy to see that the languageM1 requires registers growing

at least exponentially fast in value with the length of the word.

Since counter monitors have registers only growing linearly (and

their product polynomially) fast, we have:

Theorem 5.3. Adder monitors are more expressive than counter
monitors.

This strict separation between adders and counters holds for

both real-time monitors, and for monitors that do not halt in real

time. The extent of the expressiveness of real-time adder monitors is

unknown. In particular, we do not know if a hierarchy, analogous to

the one of Section 4 exists. Consider the following set of languages.

Example 5.4. Let Σ′ = Σ ∪ {#}, where Σ = {a,b} as previously.
Events a and b now represent bit values and event # serves as a

delimiter. We define the safety language

Mk =
⋃

w1, ...,wk ∈Σ∗
#(w1# ∪ . . . ∪wk#)

ω ∪ #(w1# ∪ . . . ∪wk#)
∗Σω

consisting of sequences of words between separators, in which at

mostk unique words repeat. This couldmodel some communication

channel in which processes periodically broadcast some unique

identifier, and the safety property being that at most k processes

can use the channel.

Example 5.4 seem to indicate that increasing the number of

registers in real-time adder monitors always leads to a gain in

expressive power. For general adder monitors, not required to halt

in real-time, that cannot be the case. We show on the contrary that

the hierarchy collapses at k = 6.

Theorem 5.5. Adder monitors with 6 registers can recognize all
computable safety languages.

Proof. Assume an alphabet Σ = {a,b}, larger alphabets can
easily be accommodated. We use 6 registers r , s, t ,x ,y, z and simu-

late a deterministic Turing machine whose tape initially contains

the input word. This resembles the standard simulation of Turing

machines by counter machines [36], however with the additional

technical complications that the input must be stored for delayed

processing and that counters cannot be decremented. Register t
will store the pending input in binary, register s is used as a cursor

to write t , registers x and y respectively store the parts of the tape

at the left and right of the read/write head, and registers r and z
are used as temporary variables to perform divisions.

At every new input event the cursor, initialized to 1, is moved

to the right by letting s ← 2s . Register t does not need updating

for event a and is updated by t ← t + s for event b. The symbol

currently under the read/write head is stored in finite memory.

Reading and writing on the tape is simulated asynchronously (at a

slower rate) as follows.

To simulate a move of the head to the left, we first write the

symbol under the read/write head as least significant bit in y by

y ← 2y for symbol a and y ← 2y + 1 for symbol b. The encoding of
the pending part of the tape is updated by t ← 2t and s ← 2s . We

then read the least significant bit in x . For this, we use register r
and z to divide x by 2 by through the updates z ← z + 1, r ← r + 2
until either r = x (remainder is 0) or r = x − 1 (remainder is 1). The

remainder is stored in finite memory as the new symbol under the

read/write head, and x is updated by x ← z.
To simulate a move of the head to the right, we proceed sym-

metrically but only after having updated y with the pending part

of the tape stored in t . For this, we use y ← y + t , t ← 0 and cancel

the update s ← 2s at the next input event.
While moving the head by one position may cost an arbitrary

amount of registers operations, every simulated move will always

terminate in finite time. □

5.2 Adders versus Counters in Real Time
In real time, such a completeness result cannot hold due to the

existence of problems with time complexity more than exponential.

It is likely that every register in adder monitor increases their

expressive power. We found no proof of this, but obtained the

following separation result: in real time, 2 adders are not sufficient

to simulate 3 counters.

Example 5.6. We let Σ = {a, #}, and consider the safety language

Nk =
⋃

n1, ...,nk ∈N
#(an1

#∪ . . . ∪ ank #)ω ∪ #(an1
#∪ . . . ∪ ank #)∗aω

consisting of sequences of strings of a, featuring at most k unique

lengths. This language is similar to the languageMk of Example 5.4

but where finite words are over a unary alphabet.

Theorem 5.7. The language N2 can be recognized in real time by
a counter monitor with 3 registers but not by an adder monitor with
2 registers.

For the easy part of the theorem, we can construct a counter

monitor with registers {x ,y, z} recognizing N2 as follows. We count

n1 in x if it exists, n2 , n1 in y if it exists, and any other sequence

of a’s in z. If upon occurrence of a separator, z = x or z = y then

reject.

For the hard part of the theorem, we let A be a real-time adder
monitor over the alphabet Σ = {a, #} with 2 registers {x ,y}, rate c ,
andm control locations. We will use the following lemma. Given a

finite wordw let us denote by x (w ) and y (w ) the values of x and y
in A after readingw , respectively.

Lemma 5.8. Let n be a positive integer andu,u ′ be words such that
x (u) = y (u) > 2

cn and x (u ′) = y (u ′) > 2
cn , and A is in the same

location after reading u or u ′. For any wordw with |w | ≤ n we have
uw is bad prefix for L(A) iff u ′w is also bad prefix for L(A).
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Proof. Assume x (u) = y (u) = k for some k > 2
cn

and word

u. Let us denote by qi the location of monitor A after reading

u and the first i letters of w . The value of registers x and y after

reading i letters ofw starting with initial value k can be respectively

decomposed into eik+ fi and дik+hi for positive integers ei ,дi and
0 ≤ fi < 2

ci
, 0 ≤ hi < 2

ci
. This can easily be shown by induction

on i . Every update of the form x ← x + 1 adds 1 to fi and every

update of the form x ← x + y adds дi to ei and hi to fi , similarly

for other forms of updates. In particular max{дi ,hi } is multiplied

at most by 2 per update, and assuming rate c , at most by 2
c
per

transition.

Assume further x (u ′) = y (u ′) = k ′ for some k ′ > 2
cn

and

word u ′ such that A is in location q0 after reading u
′
. We write

e ′i , f
′
i ,д
′
i ,h
′
i the coefficients that occur in the decomposition of x and

y after reading i letters ofw as previously, starting with alternative

register value x = y = k ′. Let us also write q′i the locations of

A after reading i letters ofw , starting with register values k ′. We

show by induction on i that e ′i = ei , fi = f ′i , дi = д′i , hi = h′i ,
and qi = q′i . For i = 0 the initial values of each coefficients are

the same. For i ≥ 1, we demonstrated that | fi | < k and | f ′i | < k ′,
which gives us ei−1k + fi−1 = дi−1k + hi−1 iff ei−1 = дi−1 and

fi−1 = hi−1. In turn this holds iff ei−1k
′+ fi−1 = дi−1k

′+hi−1, and
iff e ′i−1k

′+ f ′i−1 = д
′
i−1k

′+h′i−1 by induction hypothesis. Therefore

any test ax + by + d = 0 with coefficients a, b, d at most 2
c
in

magnitude passes or fails identically starting from k or from k ′. By
induction hypothesis we also have qi−1 = q′i−1 so that the same

updates are applied, yielding equal coefficients ei = e ′i , . . . ,hi = h
′
i

and equal target locations qi = q
′
i .

We obtain that automatonA is in the same location after reading

uw and u ′w . Thus A errs on both words, or on neither. Since A

operates in real time, we have that uw is a bad prefix for L(A) iff
u ′w is also a bad prefix for L(A). □

Assume towards a contradiction that A recognizes N2. In addi-

tion to the lemma above, we also make use of the following facts.

Claim 1. For any l ≥ 0, there are at mostml2 wordsw = #u1#u2
such that max{x (w ),y (w )} < l .

Claim 2. For any wordw = #u#v#u ∈ L(A) with u,v ∈ a∗ such
that |u | > m+1, there existsu ′,u ′′ such thatu ′u ′′ = u, |u ′′ | ≤ m+1,
and x (#u#v#u ′) = y (#u#v#u ′).

We now have all the ingredients to proceed.

Proof of Theorem 5.7. Let us fix some positive integer n such

that n > 4(m + 1)2 and n2 > 2c (n +m + 2). We call unbalanced any

word of the form w = #u#v such that 3 · 4n
2

< |u | ≤ 4
n2+1

and

n < |v | ≤ 2n, and max{x (w ),y (w )} ≥ 2
n2

. There are 4
n2

possible

words u ∈ a∗ such that 3 · 4n
2

< |u | ≤ 4
n2+1

, and n possible words

v ∈ a∗ with n < |v | ≤ 2n. Following Claim 1, there are at least

n4n
2

− 2
n2

> n4n
2−1

unbalanced words. Thus there exists a special

prefix u0 for which there are at least
n
4
distinct words v such that

#u0#v is unbalanced. Following Claim 2, since |u0 | > m+1 for every
such v there exist u ′,u ′′ such that u0 = u ′u ′′ with |u ′′ | ≤ m + 1,
and x (#u0#v#u

′) = y (#u0#v#u
′). There are at least n

4
> (m + 1)2

words v such that #u0#v is unbalanced, and thus there exist two

words v1 , v2 associated with the same factorization u ′u ′′ of
u0, and such that A is in the same location after reading either

C
M

• N2

•M2

•M1

AM

.

.

.

3-AM

2-AM

1-AM

=
FSM

Figure 8: Separation of real-time adders. FSM, CM, and AM
stand for finite-state monitor, counter monitor, and real-
time adder monitor respectively.

w1 = #u0#v1#u
′
orw2 = #u0#v2#u

′
. But then by Lemma 5.8 since

|#u ′′#v1 | ≤ 2n +m + 2 and x (w1) = y (w1), x (w2) = y (w2) are

greater than or equal to 2
n2

> 2
2c (n+m+2)

we have thatw1u
′′
#v1#

is a bad prefix for L(A) iffw2u
′′
#v1# is also a bad prefix for L(A).

By hypothesis A halts in real-time and w2u
′′
#v1# is a bad prefix

for N2 whilew1u
′′
#v1 is not. Thus L(A) , N2. □

One can easily check that the proof of Theorem 5.7 carries over

to the language M2. Thus the inclusion of real-time 2-adder lan-

guages in real-time 3-adder languages is also proper in the subset

of languages not counter recognizable. A summary of the results

of the last two subsections appears in Figure 8.

5.3 Adder Variants
We observe that providing adder monitors with a subtraction op-

eration and replacing an equality test by a test for zero does not

affect their expressive power.

Theorem 5.9. Register monitors with instruction set ⟨1,+,=⟩ and
with instruction set ⟨1,+,−,=0⟩ are equally expressive.

Moreover, simulations underlying the above theorem are real-

time.

Let us now investigate the effect of copy updates in adders. Take

X to be a set of registers. Following [3], an update µ overX is said to

be copyless if every variable y appears at most once in

∑
x ∈X µ (x ).

An adder monitor is copyless if every one of its updates is.

Surprisingly we show that in copyless monitors, adders are not

more expressive than counters. Here we assume that addermonitors

are equipped with a reset operation, that is, the instruction set we

consider is ⟨0, 1,+,=⟩, otherwise the statement is trivial.

Theorem 5.10. Any copyless reset-adder monitor with k registers
can be simulated in real time by a counter monitor with 2

k registers.

Proof. LetA be an arbitrary copyless reset-adder monitor, and

let X be its set of registers. We construct an equivalent counter

monitor A ′ as follows. Registers of A ′ are taken in the set R =
{rY | Y ⊆ X }. By definition, the sum of any subset of the right-

hand sides of a copyless update does not feature duplicated variables

either. Therefore we can maintain each variable rY of A ′, storing∑
y∈Y ry , by using updates of the form rY ← rZ + a. Tests in A

′

are obtained form those in A by replacing every x ∈ X by rx . □
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6 BEYOND ADDERS
We now consider general arithmetic register instructions.

Definition 6.1. We call linear a register monitor with the instruc-

tion set ⟨0, 1,+,−, ≥⟩ and we call polynomial a register monitor

with the instruction set ⟨0, 1,+,−,×, ≥⟩.

The expressive power of real-time linear register monitors is

related to that of real-time, multi-tape Turing machines. A formal

definition of this model is given in [35]. The safety ω-language of
a Turing machine is the set of ω-words on which it does not halt.

A Turing machine is said to be real-time when it errs on the set of

bad prefixes for its safety language. It is easy to see that 2 linear

registers can emulate a push-down store, using comparisons x ≥ y
to probe the most significant bit of a register x and x ← x + y,
x ← x −y to write it when y stores 2

n
and x has length n. Dividing

y by 2 is equivalent to multiplying x by 2. Thus:

Theorem 6.2. Linear register monitors with 4k registers can sim-
ulate Turing machines with k work tapes in real time for all k ≥ 0.

Since Turing machines with one work tape can simulate any

number of counters in real time [37], we have:

Corollary 6.3. Any counter monitor can be simulated by a linear
register monitor with 4 registers in real time.

In spite of their ability to multiply, polynomial register monitors

still have limited expressive power in real time.

Example 6.4. Let Σ = {a,b}, and Σ′ = Σ ∪ {#}. We consider the

following language H , defined as

H = #Σ′ω \
⋃
w ∈Σ∗

(#Σ∗)∗#w (#Σ∗)∗#w#Σ′ω .

When finite words over Σ represent numbers in binary notation and

# separates words into numbers, language H represents sequences

in which no number repeats.

We obtain the following result, analogous to the one of [20] for

the model of real-time Turing machines.

Theorem 6.5. The language H cannot be monitored by real-time
polynomial register monitors.

We will use the following characterization of the number of cells

in semialgebraic decompositions due to [32]:

Lemma 6.6. Given a set of polynomials P = {p1, . . . ,ps } in vari-
ables x1, . . . ,xk where each polynomial has degree at most d , the
number of cells in the partition of Rk by P is O ((sd/k )k ).

Proof of Theorem 6.5. Assume towards a contradiction the ex-

istence of a real-time polynomial register monitor A such that

L(A) = H . Letm,k, c respectively stand for the number of states,

number of registers, and rate of A. We examine configurations

of A after reading a prefix of the form #u#w# where u ∈ Σ′∗ and
w ∈ Σn for fixed length n. Since the prefix #u is arbitrarily long,

it can feature any subset of words of length n. While processing

w#, the monitor must discriminate between 2
2
n
subsets of words of

length n. During this subword,A performs n + 1 updates and tests.

This is equivalent to testing the values of registers for inequalities

with terms of size c (n + 2). These terms are polynomials with k

variables of degree cn. Let us denote by P this family of polynomi-

als. We have |P | < (k + 4)c (n+2) by enumeration of their possible

syntactic trees. Tests p ≥ 0 for p ∈ P form a partition over Zk into

finitely many cells, in which the sign of every polynomial in P is

constant. By application of Lemma 6.6 we obtain that the number of

nonempty cells defined by P isO (((k + 4)c (n+2)c (n + 2)/k )k ). After
reading a prefix #u#, monitor A is in one ofm locations. Through-

out the suffixw#, possible register valuations v and v ′ cannot be
distinguished when they lie in the same cell. Hence for large n the

numbers of inequivalent configurations of A is 2
O (n logn)

. This

does not suffice to discriminate between 2
2
n
equivalence classes of

prefixes of H . Thus A does not recognize bad prefixes for H . □

We remark that however if numbers are presented in unary, then

the corresponding language can be recognized in real time.

Example 6.7. Let Σ′ = {a, #}. We now consider language

K = #Σ′ω \
⋃
n∈N

(#a∗)∗#an (#a∗)∗#an#Σ′ω

of words in which no number, given in unary notation, repeats.

Theorem 6.8. The language K can be recognized by a linear reg-
ister monitor in real time.

Proof. We encode a set of numbers {n1, . . . ,nk } into the value

2
n1+. . .+2nk . It is straightforward tomaintain this encoding in real-

time using a single-tape Turing machine with a special instruction

making the read/write head jump back to the first position. A minor

adaptation of Theorem 6.2 give us that the language K is also

recognizable by a linear register monitor in real time. □

We do not know whether k + 1 registers are more powerful

than k registers in real-time polynomial monitors. An instruction

set in which the hierarchy collapses is ⟨0, 1,+,×, e, f , ≥⟩ where e
and f are binary functions such that e (i, j ) = i j , and f (i, j ) is the
multiplicity of factor j in the prime decomposition of i . With this

instruction set, any monitor with k registers can be simulated in

real time by a monitor with 1 register.

7 CONCLUSION
We propose register monitors as a computational model for the run-

time monitoring of reactive systems. The basic monitoring prob-

lem asks for recognizing a safety ω-language in real time. While

previous approaches put emphasis on the subclass of ω-regular
languages, we see no reason to restrict monitors, which are usually

implemented in software, to finite-state. Looking beyond finite-

state, we uncovered an expressiveness hierarchy for register moni-

tors depending on the number of available registers and arithmetic

capabilities. This hierarchy is significantly more nuanced than the

computability hierarchy, which does not restrict register machines

to a single pass over an input word, nor to a bounded number of

steps between consecutive inputs.

There are several directions in which this work needs to be

extended. First, while our monitors can only reject an input word,

quantitative monitors may output values, such as the maximal or

average response time seen so far [5]. Quantitative monitors have

several advantages: they can be used to over- or underapproximate

the desired quantity, and thus, they can be compared according to a
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resource-precision trade-off. Similarly to the qualitative monitoring

we studied, we expect quantitative and approximate monitoring

with arithmetic registers to exhibit a rich theory beyond the finite-

state/ω-regular case.
Second, monitors for the same language can be compared as to

how “quickly” they reject a violating input word. There is a trade-

off between the resources (registers and operations) available to

a monitor and its efficiency (delayed rejection), which is closely

related to the time and space requirements of on-line computation.

Third, we left several interesting problems open, perhaps most

notably the question whether adder monitors exhibit the same strict

register hierarchy as counter monitors; we were able to show that

3 adders are more powerful than 2 adders, but the general problem

is still open in the real-time case. In particular, the information-

theoretic arguments that have been used for real-time Turing ma-

chines do not directly apply.

Fourth, a logical next step beyond monitoring is enforcement.
In enforcement [12] (or “shielding” [23]), the monitor can, in real

time, make changes to the observed input sequence in order to

repair property violations. Once again, the topic of finite-state

enforcement has received much attention, but to the best of our

knowledge the power of enforcement with registers has not yet

been studied.
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